Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(18): 7008-7017, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32106353

RESUMO

The competition between honeycomb and hexagonal tiling of molecular units can lead to large honeycomb superstructures on surfaces. Such superstructures exhibit pores that may be used as 2D templates for functional guest molecules. Honeycomb superstructures of molecules that comprise a C3 symmetric platform on Au(111) and Ag(111) surfaces are presented. The superstructures cover nearly mesoscopic areas with unit cells containing up to 3000 molecules, more than an order of magnitude larger than previously reported. The unit cell size may be controlled by the coverage. A fairly general model was developed to describe the energetics of honeycomb superstructures built from C3 symmetric units. Based on three parameters that characterize two competing bonding arrangements, the model is consistent with the present experimental data and also reproduces various published results. The model identifies the relevant driving force, mostly related to geometric aspects, of the pattern formation.

2.
J Phys Condens Matter ; 31(18): 18LT01, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30721893

RESUMO

The conductances of molecules physisorbed to Au(1 1 1) via an extended [Formula: see text] system are probed with the tip of a low-temperature scanning tunneling microscope to maximize the control of the junction geometry. Inert hydrogen, methyl, and reactive propynyl subunits were attached to the platform and stand upright. Because of their different reactivities, either non-bonding (hydrogen and methyl) or bonding (propynyl) tip-molecule contacts are formed. The conductances exhibit little scatter between different experimental runs on different molecules, display distinct evolutions with the tip-subunit distance, and reach contact values of 0.003-0.05 G 0. For equal tip-platform distances the contact conductance of the inert methyl is close to that of the reactive propynyl. Under further compression, the inert species, hydrogen and methyl, are found to be better conductors. This shows that the current flow is not directly correlated with the chemical interaction. Atomistic calculations for the methyl case reproduce the conductance evolution and reveal the role of the junction geometry, forces and orbital symmetries at the tip-molecule interface. The current flow is controlled by orbital symmetries at the electrode interfaces rather than by the energy alignment of the molecular orbitals and electrode states. Functionalized molecular platforms thus open new ways to control and engineer electron conduction through metal-molecule interfaces at the atomic level.

3.
J Chem Phys ; 149(24): 244705, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599747

RESUMO

Trioxatriangulenium (TOTA) platform molecules were functionalized with methyl, ethyl, ethynyl, propynyl, and hydrogen and sublimated onto Au(111) surfaces. Low-temperature scanning tunneling microscopy data reveal that >99% of ethyl-TOTA and methyl-TOTA remain intact, whereas 60% of H-TOTA and >99% of propynyl-TOTA and ethynyl-TOTA decompose. The observed tendency toward fragmentation on Au(111) is opposite to the sequence of gas-phase stabilities of the molecules. Although Au(111) is the noblest of all metal surfaces, the binding energies of the decomposition products to Au(111) destabilize the functionalized platforms by 2 to 3.9 eV (190-370 kJ/mol) and even render some of them unstable as revealed by density functional theory calculations. Van der Waals forces are important, as they drive the adsorption of the platform molecules.

4.
Phys Rev Lett ; 119(6): 066801, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949604

RESUMO

A freestanding molecular wire is placed vertically on Au(111) using a platform molecule and contacted by a scanning tunneling microscope. Despite the simplicity of the single-molecule junction, its conductance G reproducibly varies in a complex manner with the electrode separation. Transport calculations show that G is controlled by a deformation of the molecule, a symmetry mismatch between the tip and molecule orbitals, and the breaking of a C≡C triple in favor of a Au─C─C bond. This tip-controlled reversible bond formation or rupture alters the electronic spectrum of the junction and the states accessible for transport, resulting in an order of magnitude variation of the conductance.

5.
J Phys Chem Lett ; 8(7): 1569-1573, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319403

RESUMO

Spin-crossover molecules on metallic substrates have recently attracted considerable interest for their potential applications in molecular spintronics. Using scanning tunneling microscopy, we evidence the first successful deposition of a charged FeIII spin-crossover complex, [Fe(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato), on Au(111). Furthermore, the bulk form of the molecules is stabilized by a perchlorate counterion, which depending on the deposition technique may affect the quality of the deposition and the measurements. Finally, we evidence switching of the molecules on Au(111).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...