Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 18(6): 1470-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18767623

RESUMO

The recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series. Results from the two chronosequences did not vary significantly and were combined. Based on modeling predictions, the recovery rates of different ecosystem components varied greatly. Overall, C stocks recovered faster than N stocks, but both C and N stocks recovered more rapidly for aboveground vegetation than for any other ecosystem component. Aboveground C and N reached 95% of remnant levels in only 13 years and 21 years, respectively, after planting to native vegetation. Belowground plant C and N recovered several decades later, while microbial biomass C, soil organic C (SOC), and total soil N recovered on a century timescale. In the cultivated fields, SOC concentrations were depleted within the surface 25 cm, coinciding with the depth of plowing, but cultivation apparently led to redistribution of soil C, increasing SOC stocks deeper in the soil profile. The restoration of prairie vegetation was effective at rebuilding soil organic matter (SOM) in the surface soil. Accrual rates were maintained at 43 g C x m(-2) x yr(-1) and 3 g N x m(-2) x yr(-1) in the surface 0.16 Mg/m2 soil mass during the first 26 years of restoration and were predicted to reach 50% of their storage potential (3500 g C/m2) in the first 100 years. We conclude that restoration of tallgrass prairie vegetation can restore SOM lost through cultivation and has the potential to sequester relatively large amounts of SOC over a sustained period of time. Whether restored prairies can retain the C apparently transferred to the subsoil by cultivation practices remains to be seen.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Poaceae/metabolismo , Solo/análise , Carbono/análise , Conservação dos Recursos Naturais , Produtos Agrícolas/metabolismo , Illinois , Nitrogênio/análise , Fatores de Tempo
2.
New Phytol ; 155(1): 149-162, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873302

RESUMO

• The carbon sink strength of arbuscular mycorrhizal fungi (AMF) was investigated by comparing the growth dynamics of mycorrhizal and nonmycorrhizal Andropogon gerardii plants over a wide range of equivalent tissue phosphorus : nitrogen (P : N) ratios. • Host growth, apparent photosynthesis (Anet ), net C gain (Cn ) and P and N uptake were evaluated in sequential harvests of mycorrhizal and nonmycorrhizal A. gerardii plants. Response curves were used to assess the effect of assimilate supply on the mycorrhizal symbiosis in relation to the association of C with N and P. • Mycorrhizal plants had higher Cn than nonmycorrhizal plants at equivalent shoot P : N ratios even though colonization did not affect plant dry mass. The higher Cn in mycorrhizal plants was related to both an increase in specific leaf area and enhanced photosynthesis. The additional carbon gain associated with the mycorrhizal condition was not allocated to root biomass. The Cn in the mycorrhizal plants was positively related to the proportion of active colonization in the roots. • The calculated difference between Cn values in mycorrhizal and nonmycorrhizal plants, Cdiff , appeared to correspond to the sink strength of the AMF and was not an indirect result of enhanced nutrition in mycorrhizal plants.

3.
Am J Bot ; 88(9): 1650-6, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21669699

RESUMO

Andropogon gerardii seed obtained from Kansas and Illinois was grown in a controlled environment in their own and each other's soils, with and without arbuscular mycorrhizal fungi (AMF). Each ecotype grew comparatively better in its own soil indicating adaptation to its soil of origin. Overall, A. gerardii benefited more from AMF in low-nutrient Kansas soil than Illinois soil. The two ecotypes, however, did not benefit equally from mycorrhizal infection. The Kansas ecotype was three times more responsive to mycorrhizal infection in the Kansas soil than was the Illinois ecotype. Our results indicate that plant adaptation to the nutrient levels of their local soils is likely to be due, at least in part, to a shift in their dependence on mycorrhizal fungi. The Illinois ecotype of A. gerardii has evolved a reduced dependence upon these fungi and greater reliance on a more highly branched root system. In contrast, the Kansas ecotype had a significantly coarser root system and invested proportionately greater carbon in the symbiotic association with AMF as measured by spore production. This study provides the first demonstration that plants can adapt to changing soil nutrient levels by shifting their dependence on AMF. This result has broad implications for our understanding of the role of these fungi in agricultural systems.

4.
Am J Bot ; 86(4): 547-53, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10205075

RESUMO

The Cyperaceae have generally been considered nonmycorrhizal, although recent evidence suggests that mycotrophy may be considerably more widespread among sedges than was previously realized. This study surveyed 23 species of Carex occurring in upland and wetland habitats in northeastern Illinois. Mycorrhizal infection by arbuscular fungi was found in the roots of 16 species of Carex and appears to occur in response to many factors, both environmental and phylogenetic. While some species appear to be obligately nonmycorrhizal, edaphic influences may be responsible for infection in others. In five of the seven Carex species that were nonmycorrhizal, a novel root character, the presence of bulbous-based root hairs, was identified. The taxonomically patchy distribution of the distinctive root hair trait suggests that these structures may have evolved several times within the genus. Evidence of multiple independent origins of the root hair trait lends support to the hypothesis that root hairs represent an adaptation to nonmycotrophy. Although taxonomic position does seem to be of importance in determining the mycorrhizal dependence of sedges, the pattern may be a patchwork of both mycorrhizal clades and clades that have adapted to the nonmycorrhizal state.

6.
Oecologia ; 103(1): 17-23, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28306940

RESUMO

External hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi were quantified over a growing season in a reconstructed tallgrass prairie and an ungrazed cool-season pasture. In both sites, hyphal lengths increased throughout the growing season. Peak external hyphal lengths were 111 m cm-3 of soil in the prairie and 81 m cm-3 of soil in the pasture. These hyphal lengths calculate to external hyphal dry weights of 457 µg cm-3 and 339 µg cm-3 of soil for prairie and pasture communities, respectively. The relationships among external hyphal length, root characteristics, soil P and soil moisture were also determined. Measures of gross root morphology [e.g., specific root length (SRL) and root mass] have a strong association with external hyphal length. Over the course of the study, both grassland communities experienced a major drought event in late spring. During this period a reduction in SRL occurred in both the pasture and prairie without a measured reduction in external hyphal length. Recovery for both the pasture and prairie occurred not by increasing SRL, but rather by increasing external hyphal length. This study suggests that growth is coordinated between VAM hyphae and root morphology, which in turn, are constrained by plant community composition and soil nutrient and moisture conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...