Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220243, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211038

RESUMO

Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrin αvß3 with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between ß-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.


Assuntos
Fibronectinas , Integrinas , Integrinas/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Ligantes , Ligação Proteica
2.
Biofabrication ; 15(2)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36863017

RESUMO

Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-ß1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvß3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.


Assuntos
Líquido Extracelular , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular
3.
Mater Adv ; 3(20): 7484-7500, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36324871

RESUMO

Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.

4.
Comput Struct Biotechnol J ; 20: 4157-4171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016710

RESUMO

ADF/cofilin's cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at "boundaries" formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation behavior of actin filaments in a mechanically strained environment is critical for understanding the biophysics of their severing. The present investigation uses molecular dynamics simulations to generate atomic resolution models of bare, partially, and fully cofilin decorated actin filaments. Steered molecular dynamics simulations are utilized to determine the mechanical properties of three filament models when subjected to axial stretching, axial compression, and bending forces. We highlight differences in strain distribution, failure mechanisms in the three filament models, and biomechanical effects of cofilin cluster boundaries in overall filament rupture. Based on the influence of ADF/cofilin binding on intrastrand and interstrand G-actin interfaces, the cofilin-mediated actin filament severing model proposed here can help understand cofilin mediated actin dynamics.

5.
Sci Rep ; 12(1): 8050, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577856

RESUMO

Metastatic prostate cancer colonizes the bone to pave the way for bone metastasis, leading to skeletal complications associated with poor prognosis and morbidity. This study demonstrates the feasibility of Raman imaging to differentiate between cancer cells at different stages of tumorigenesis using a nanoclay-based three-dimensional (3D) bone mimetic in vitro model that mimics prostate cancer bone metastasis. A comprehensive study comparing the classification of as received prostate cancer cells in a two-dimensional (2D) model and cancer cells in a 3D bone mimetic environment was performed over various time intervals using principal component analysis (PCA). Our results showed distinctive spectral differences in Raman imaging between prostate cancer cells and the cells cultured in 3D bone mimetic scaffolds, particularly at 1002, 1261, 1444, and 1654 cm-1, which primarily contain proteins and lipids signals. Raman maps capture sub-cellular responses with the progression of tumor cells into metastasis. Raman feature extraction via cluster analysis allows for the identification of specific cellular constituents in the images. For the first time, this work demonstrates a promising potential of Raman imaging, PCA, and cluster analysis to discriminate between cancer cells at different stages of metastatic tumorigenesis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Masculino , Neoplasias da Próstata/patologia
6.
ACS Appl Bio Mater ; 5(2): 528-544, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35045249

RESUMO

Three-dimensional cellular constructs derived from pluripotent stem cells allow the ex vivo study of neurodevelopment and neurological disease within a spatially organized model. However, the robustness and utility of three-dimensional models is impacted by tissue self-organization, size limitations, nutrient supply, and heterogeneity. In this work, we have utilized the principles of nanoarchitectonics to create a multifunctional polymer/bioceramic composite microsphere system for stem cell culture and differentiation in a chemically defined microenvironment. Microspheres could be customized to produce three-dimensional structures of defined size (ranging from >100 to <350 µm) with lower mechanical properties compared with a thin film. Furthermore, the microspheres softened in solution, approaching more tissue-like mechanical properties over time. With neural stem cells (NSCs) derived from human induced pluripotent stem cells, microsphere-cultured NSCs were able to utilize multiple substrates to promote cell adhesion and proliferation. Prolonged culture of NSC-bound microspheres under differentiating conditions allowed the formation of both neural and glial cell types from control and patient-derived stem cell models. Human NSCs and differentiated neurons could also be cocultured with astrocytes and human umbilical vein endothelial cells, demonstrating application for tissue-engineered modeling of development and human disease. We further demonstrated that microspheres allow the loading and sustained release of multiple recombinant proteins to support cellular maintenance and differentiation. While previous work has principally utilized self-organizing models or protein-rich hydrogels for neural culture, the three-dimensional matrix developed here through nanoarchitectonics represents a chemically defined and robust alternative for the in vitro study of neurodevelopment and nervous system disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Células-Tronco Neurais , Células Endoteliais , Humanos , Microesferas
7.
Biomacromolecules ; 22(2): 907-917, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481563

RESUMO

Actin molecules are essential structural components of the cellular cytoskeleton. Here, we report a comprehensive analysis of F-actin's deformation behavior and highlight underlying mechanisms using steered molecular dynamics simulations (SMD). The investigation of F-actin was done under tension, compression, bending, and torsion. We report that the dissociation pattern of conformational locks at intrastrand and interstrand G-actin interfaces regulates the deformation response of F-actin. The conformational locks at the G-actin interfaces are portrayed by a spheroidal joint, interlocking serrated plates' analogy. Further, the SMD simulation approach was utilized to evaluate Young's modulus, flexural rigidity, persistent length, and torsional rigidity of F-actin, and the values obtained were found to be consistent with available experimental data. The evaluation of the mechanical properties of actin and the insight into the fundamental mechanisms contributing to its resilience described here are necessary for developing accurate models of eukaryotic cells and for assessing cellular viability and mobility.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto , Conformação Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...