Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 362: 1-11, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36513313

RESUMO

qRT-PCR is a globally accepted technique for assaying gene expression in relative terms which compares the difference between critical threshold (CT) values of a gene calculated form two independently isolated RNA samples. Independent RNA isolations, however, include error due to batch effect which must be normalized for error-free calculation of relative gene expression. Hence, CT values of internal control (IC) genes are used for normalization during the calculation of expression fold-change in gene expression analysis. The expression of ICs genes expected to be stable in all the experimental conditions. However, it is almost impossible to find such a gene which do not depict expression fluctuation in response to the changes in experimental conditions. Hence, it is necessary to identify suitable IC gene(s) for any given experimental condition before conducting any particular gene expression study. Here, we examined the suitability of eight candidate IC genes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), eukaryotic elongation factor-1 (eEF-1α), 25 S rRNA (25 S), 18 S rRNA (18 S), ubiquitin C E2 ligase (UBC), Actin (Act), ubiquitin 5 (UBQ5) and ubiquitin 10 (UBQ10), for assaying gene expression in rice during sheath blight infection. Our analysis suggest that GAPDH might be the IC of choice when expression studies include contrasting genotypes differing in their tolerance to sheath blight pathogen as well as progressive infection time. While if expression analysis have to be performed only in one genotype but under progressive sheath blight infection, UBQ5 might be chosen as IC because of its high expression stability under the proposed experimental setup.


Assuntos
Oryza , Oryza/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Genes de Plantas , Perfilação da Expressão Gênica/métodos , Gliceraldeído-3-Fosfato Desidrogenases , Ubiquitina/genética , Expressão Gênica , RNA , Rhizoctonia , Doenças das Plantas/genética
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751751

RESUMO

Beneficial soil microorganisms largely comprise of plant growth-promoting rhizobacteria (PGPR), which adhere to plant roots and facilitate their growth and development. Pseudomonas putida (RA) strain MTCC5279 is one such PGPR that exhibits several characteristics of plant growth promotion, such as P-solubilization, and siderophores and IAA production. Plant-PGPR interactions are very complex phenomena, and essentially modulate the expression of numerous genes, consequently leading to changes in the physiological, biochemical, cellular and molecular responses of plants. Therefore, in order to understand the molecular bases of plant-PGPR interactions, we carried out the identification of microRNAs from the roots of Arabidopsis upon P. putida RA-inoculation, and analyses of their expression. MicroRNAs (miRNAs) are 20- to 24-nt non-coding small RNAs known to regulate the expression of their target genes. Small RNA sequencing led to the identification of 293 known and 67 putative novel miRNAs, from the control and RA-inoculated libraries. Among these, 15 known miRNAs showed differential expression upon RA-inoculation in comparison to the control, and their expressions were corroborated by stem-loop quantitative real-time PCR. Overall, 28,746 and 6931 mRNAs were expected to be the targets of the known and putative novel miRNAs, respectively, which take part in numerous biological, cellular and molecular processes. An inverse correlation between the expression of RA-responsive miRNAs and their target genes also strengthened the crucial role of RA in developmental regulation. Our results offer insights into the understanding of the RA-mediated modulation of miRNAs and their targets in Arabidopsis, and pave the way for the further exploitation and characterization of candidate RA-responsive miRNA(s) for various crop improvement strategies directed towards plant sustainable growth and development.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Desenvolvimento Vegetal/genética , Pseudomonas putida/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Análise de Sequência de RNA
3.
Genomics ; 111(4): 509-519, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29331610

RESUMO

MicroRNAs are small non-coding regulatory RNA molecules that play an important role in the modulation of gene expression during various environmental stresses. Pseudomonas putida RA, a plant growth promoting rhizobacteria (PGPR) colonizes the root surface of plants improving their growth and development during abiotic stresses modulating the expression of stress-responsive genes; however, the impact of RA on stress responsive-miRNA remains elusive. The present study was an attempt to delineate the role of PGPR in modulating stress responsive-miRNAs in a tolerant desi chickpea genotype exposed to drought and salt stresses. The existence of variable expression patterns of individual miRNAs and their target genes under these stresses at different time points indicate a distinct miRNA-mediated perception and response mechanisms operating under these stresses in the presence or absence of RA in chickpea.


Assuntos
Cicer/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Pseudomonas putida/patogenicidade , Estresse Salino , Cicer/metabolismo , Cicer/microbiologia , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...