Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet World ; 17(1): 179-184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406353

RESUMO

Background and Aim: Antimicrobial resistance (AMR) is becoming a public health concern. Foodborne pathogens are infectious agents that can be transmitted from animals to humans through food and can become resistant due to misuse and overuse of antibiotics, especially in poultry. This study aimed to detect the prevalence of multidrug-resistant and extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli isolated from local and broiler chickens at the Cibinong market, West Java, Indonesia. Materials and Methods: A total of 60 cloacal swab samples from 30 local and broiler chickens sold at the Cibinong market in West Java were obtained by random sampling. From these samples, 39 E. coli isolates were obtained after being cultured on eosin methylene blue agar and molecularly identified using polymerase chain reaction (PCR). Six antibiotic disks were used for the antibiotic sensitivity test against E. coli isolates cultured on Mueller-Hinton agar. PCR was performed to detect ESBL genes (blaTEM, blaSHV, and blaCTX-M). Results: A total of 76.47% (39/51) cloacal swab samples were positive for E. coli. All E. coli isolates were sensitive to imipenem (100%), and 38 isolates were sensitive to cefoxitin (FOX) (97.4%). On average, the isolates were sensitive to amoxicillin-clavulanic acid (AMC) (69.2%) and ceftriaxone (CRO) (89.7%). E. coli isolates were occasionally resistant to enrofloxacin (25.64%), followed by gentamicin (20.51%), CRO (10.25%), AMC (7.69%), and FOX (2.56%). The prevalence of E. coli AMR was 10.25% (4/39). All four multidrug-resistant E. coli isolates (blaTEM and blaCTX-M) were confirmed to have the ESBL gene based on PCR. Conclusion: The prevalence of multidrug-resistant and ESBL-producing E. coli is still found, proving that there is still inappropriate use of antibiotics and a need for strict supervision of their use, especially around Cibinong market, West Java.

2.
Scientifica (Cairo) ; 2022: 9130252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106139

RESUMO

Breast cancer is the most common type of cancer women suffer from worldwide in 2020 and the 4th leading cause of cancer death. Boesenbergia rotunda is an herb with high potential as an anticancer agent. This study explores the potential bioactive compounds in B. rotunda as anti-breast cancer agents using in silico and in vitro approaches. The in silico study was used for active compound analysis, selection of anticancer compound candidates, prediction of target protein, functional annotation, molecular docking, and molecular dynamics simulation, respectively. The in vitro study was conducted by measurement toxicity, rhodamine 123, and apoptosis assays on T47D cells. Based on the KNApSAcK database, B. rotunda contained 20 metabolites, which are dominated by chalcone and flavonoid groups. Seven of them were predicted to have anticancer activity, namely, sakuranetin, cardamonin, alpinetin, 2S-pinocembrin, 7.4'-dihydroxy-5-methoxyflavanone, 5.6-dehydrokawain, and pinostrobin chalcone. These compounds targeted proteins related to cancer progression pathways such as the PI3K/Akt, FOXO, JAK/STAT, and estrogen signaling pathways. Therefore, these compounds are predicted to inhibit growth and induce apoptosis of cancer cells through their interactions with MMP12, MMP13, CDK4, JAK3, VEGFR1, VEGFR2, and KCNA3. Anticancer activity of B. rotunda through in vitro study confirmed that B. rotunda extract is strong cytotoxic and induces apoptosis of breast cancer cell lines. This study concludes that Boesenbergia rotunda has potency as an anticancer candidate.

3.
F1000Res ; 11: 169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128561

RESUMO

Background: The standardization and mechanism of action of  Caesalpinia sappan as an anticancer agent are still lacking. This study aimed to understand the mechanism of action of  C,sappan extract as an anticancer agent. Methods: This study was conducted using the A549 lung cancer cell line to understand the mechanism of action of  C. sappan extract as an anticancer agent. The cytotoxicity activity, cell cycle progression, apoptosis, protein-related apoptosis (i.e., BCL-2and BAX protein) assays, and RNA sequencing were performed level were measured. Moreover, the antioxidant activity, total flavonoids, and phenolics of C.sappan were also assessed. Results: C.sappan has strong antioxidant activity (22.14 ± 0.93 ppm) total flavonoid content of (529.3 ± 4.56 mgQE/g), and phenolics content of (923.37 ± 5 mgGAE/g). The C.sappan ethanol extract inhibited cancer cell growth and arrested at G0/G1 phase of cell cycle, inducing apoptosis by increasing BAX/BCL-2 protein ratio in A549 lung cancer cell line. Furthermore, results from RNA sequencing analysis showed that C.sappan ethanol extract caused downregulation of genes acting on mitochondrial function including adenosine triphosphate (ATP) production and respiration. Conclusions: This study demonstrated that C.sappan has the ability to inhibit cancer cell growth by inducing apoptosis and mitochondrial dysfunction in A549 cells.


Assuntos
Antineoplásicos , Caesalpinia , Neoplasias Pulmonares , Células A549 , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Etanol , Flavonoides/farmacologia , Genes Mitocondriais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Extratos Vegetais/farmacologia , Proteína X Associada a bcl-2/genética
4.
Res Pharm Sci ; 16(2): 217-226, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34084208

RESUMO

BACKGROUND AND PURPOSE: Angiogenesis has been one of the hallmarks of cancer. In recent years, Phyllanthus niruri extract (PNE) was reported to inhibit angiogenesis by decreasing the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in breast cancer. However, the experimental results were confirmed in cancer cell lines only, whereas the anti-angiogenic activity in animal models has not been demonstrated. In this study, we tried to examine the anti-angiogenic activity of PNE on BALB/c strain mice models that were induced for breast cancer using the carcinogenic substance 7,12- dimethylbenz[a]anthracene (DMBA). EXPERIMENTAL APPROACH: Experimental animals were divided into five different groups; vehicle, DMBA, PNE 500 mg/kg, PNE 1000 mg/kg; and PNE 2000 mg/kg. Mammary carcinogenesis was induced using a subcutaneous injection of 15 mg/kg of DMBA for 12 weeks. Afterward, oral PNE treatment was given for the following 5 weeks. VEGFA and HIF-1α were observed using immunohistochemistry. Endothelial cell markers CD31, CD146, and CD34 were observed using the fluorescent immunohistochemistry method. The levels of interleukin-6 (IL-6), IL-17, and C-X-C motif chemokine (CXCL12) were measured using flow cytometry. FINDINGS/RESULTS: The survival analysis indicated that PNE increased the survival rate of mice (P = 0.043, log-rank test) at all doses. The PNE treatment decreased the immunoreactive score of angiogenic factors (VEGF and HIF-1α), as well as the endothelial cell markers (CD31, CD146, and CD34). The PNE- treated groups also decreased the levels of inflammatory cytokines (IL-6, IL-17, and CXCL12) at all doses. CONCLUSION AND IMPLICATIONS: This finding suggests that PNE may inhibit the progression of angiogenesis in breast cancer mice by targeting the hypoxia and inflammatory pathways.

5.
Int J Microbiol ; 2020: 8526581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190055

RESUMO

In this study, the application of an autochthonous microorganism as probiotic on catfish (Clarias sp.) was scarcely reported. This study aimed to obtain probiotic candidates from the digestive tract (intestinal and gastric) of catfish. A total of nine isolates were successfully isolated from the catfish. Almost all bacterial colonies were morphologically round, had flat edges, were yellow, and produced clear zones as a sign of producing acid during culture. The analysis showed that the three isolates had the best activity in inhibiting fish pathogen isolates. Furthermore, molecular analysis revealed that those three isolates were Bacillus velezensis UB-C1, Bacillus amyloliquifaciens UB-C5, and Bacillus cereus UB-C8. Interestingly, those three bacteria were non-lactic acid bacteria.

6.
F1000Res ; 8: 1938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32566131

RESUMO

Background: The mangrove, Rhizophora mucronata, an essential source of endophytic bacteria, was investigated for its ability to produce glutaminase-free L-asparaginase. The study aimed to obtain glutaminase-free L-asparaginase-producing endophytic bacteria from the mangrove and to optimize enzyme production. Methods: The screening of L-asparaginase-producing bacteria used modified M9 medium. The potential producer was further analyzed with respect to its species using 16S rRNA gene sequencing. Taguchi experimental design was applied to optimize the enzyme production. Four factors (L-asparagine concentration, pH, temperature, and inoculum concentration) were selected at four levels. Results: The results indicated that the endophytic bacteria Lysinibacillus fusiformis B27 isolated from R. mucronata was a potential producer of glutaminase-free L-asparaginase. The experiment indicated that pH 6, temperature at 35°C, and inoculum concentration of 1.5% enabled the best production and were essential factors. L-asparagine (2%) was less critical for optimum production. Conclusions: L. fusiformis B27, isolated from Rhizophora mucronata, can be optimized for L-ASNase enzyme production using optimization factors (L-ASNase, pH, temperature, and inoculum), which can increase L-ASNase enzyme production by approximately three-fold.


Assuntos
Bacillaceae , Asparaginase , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...