Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; 37(12): 1282-1290, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31674292

RESUMO

Greenhouse gas emissions resulting from municipal solid waste management activities and the associated climate change impacts are getting great attention worldwide. This study investigates greenhouse gas emissions and their distribution during waste collection and transport activities in the Dammam region of Saudi Arabia. Greenhouse gas emissions and associated global warming factors were estimated based on diesel fuel consumption during waste collection and transport activities. Then, waste collection and transport data were used to parameterise a mechanistic collection model that can be used to estimate and predict future fuel consumption and greenhouse gas emissions. For the collection and transport of municipal waste in the study area, the average associated total greenhouse gas emissions were about 24,935 tCO2-eq. Global warming factors for three provinces were estimated as 25.23 kg CO2-eq t-1, 25.04 kg CO2-eq t-1, and 37.15 kg CO2-eq t-1, respectively. Lastly, the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) modelling system was used to estimate the atmospheric dispersion of greenhouse gas emissions. Model results revealed that the maximum daily greenhouse gas concentrations ranged between 0.174 and 97.3 mg m-3, while annual average greenhouse gas concentrations were found to be between 0.012 and 27.7 mg m-3 within the study domain. The highest greenhouse gas concentrations were observed for the regions involving the municipal solid waste collection routes owing to their higher source emission rates.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Dióxido de Carbono , Aquecimento Global , Efeito Estufa , Resíduos Sólidos
2.
Environ Sci Technol ; 53(4): 1766-1775, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30633859

RESUMO

Solid waste management (SWM) is a key function of local government and is critical to protecting human health and the environment. Development of effective SWM strategies should consider comprehensive SWM process choices and policy implications on system-level cost and environmental performance. This analysis evaluated cost and select environmental implications of SWM policies for Wake County, North Carolina using a life-cycle approach. A county-specific data set and scenarios were developed to evaluate alternatives for residential municipal SWM, which included combinations of a mixed waste material recovery facility (MRF), anaerobic digestion, and waste-to-energy combustion in addition to existing SWM infrastructure (composting, landfilling, single stream recycling). Multiple landfill diversion and budget levels were considered for each scenario. At maximum diversion, the greenhouse gas (GHG) mitigation costs ranged from 30 to 900 $/MTCO2e; the lower values were when a mixed waste MRF was used, and the higher values when anaerobic digestion was used. Utilization of the mixed waste MRF was sensitive to the efficiency of material separation and operating cost. Maintaining the current separate collection scheme limited the potential for cost and GHG reductions. Municipalities seeking to cost-effectively increase landfill diversion while reducing GHGs should consider waste-to-energy, mixed waste separation, and changes to collection.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Cidades , Efeito Estufa , Humanos , North Carolina , Resíduos Sólidos
3.
Waste Manag Res ; 36(2): 131-139, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29228879

RESUMO

This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO2-eq and from 4.60 to 15.20 kg CO2-eq t-1, respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO2-eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Efeito Estufa , Resíduos Sólidos , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...