Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 112(5): 1317-1328, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205434

RESUMO

HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on µ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/metabolismo , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Heroína/metabolismo , Heroína/farmacologia , Qualidade de Vida , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Macrófagos/metabolismo , Receptores Opioides/metabolismo
2.
J Leukoc Biol ; 109(3): 675-681, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32578908

RESUMO

Approximately 15-40% of people living with HIV develop HIV-associated neurocognitive disorders, HAND, despite successful antiretroviral therapy. There are no therapies to treat these disorders. HIV enters the CNS early after infection, in part by transmigration of infected monocytes. Currently, there is a major opioid epidemic in the United States. Opioid use disorder in the context of HIV infection is important because studies show that opioids exacerbate HIV-mediated neuroinflammation that may contribute to more severe cognitive deficits. Buprenorphine is an opioid derivate commonly prescribed for opiate agonist treatment. We used the EcoHIV mouse model to study the effects of buprenorphine on cognitive impairment and to correlate these with monocyte migration into the CNS. We show that buprenorphine treatment prior to mouse EcoHIV infection prevents the development of cognitive impairment, in part, by decreased accumulation of monocytes in the brain. We propose that buprenorphine has a novel therapeutic benefit of limiting the development of neurocognitive impairment in HIV-infected opioid abusers as well as in nonabusers, in addition to decreasing the use of harmful opioids. Buprenorphine may also be used in combination with HIV prevention strategies such as pre-exposure prophylaxis because of its safety profile.


Assuntos
Complexo AIDS Demência/prevenção & controle , Buprenorfina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Complexo AIDS Demência/complicações , Complexo AIDS Demência/virologia , Animais , Antígenos Ly/metabolismo , Encéfalo/patologia , Buprenorfina/farmacologia , Doença Crônica , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/virologia , Modelos Animais de Doenças , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Fenótipo , Carga Viral/efeitos dos fármacos
3.
Front Immunol ; 10: 2445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681322

RESUMO

HIV associated neurocognitive disorders (HAND) are a group of neurological deficits that affect approximately half of people living with HIV (PLWH) despite effective antiretroviral therapy (ART). There are currently no reliable molecular biomarkers or treatments for HAND. Given the national opioid epidemic, as well as illegal and prescription use of opioid drugs among PLWH, it is critical to characterize the molecular interactions between HIV and opioids in cells of the CNS. It is also important to study the role of opioid substitution therapies in the context of HIV and CNS damage in vitro and in vivo. A major mechanism contributing to HIV neuropathogenesis is chronic, low-level inflammation in the CNS. HIV enters the brain within 4-8 days after peripheral infection and establishes CNS reservoirs, even in the context of ART, that are difficult to identify and eliminate. Infected cells, including monocytes, macrophages, and microglia, produce chemokines, cytokines, neurotoxic mediators, and viral proteins that contribute to chronic inflammation and ongoing neuronal damage. Opioids have been shown to impact these immune cells through a variety of molecular mechanisms, including opioid receptor binding and cross desensitization with chemokine receptors. The effects of opioid use on cognitive outcomes in individuals with HAND in clinical studies is variable, and thus multiple biological mechanisms are likely to contribute to the complex relationship between opioids and HIV in the CNS. In this review, we will examine what is known about both HIV and opioid mediated neuropathogenesis, and discuss key molecular processes that may be impacted by HIV and opioids in the context of neuroinflammation and CNS damage. We will also assess what is known about the effects of ART on these processes, and highlight areas of study that should be addressed in the context of ART.


Assuntos
Analgésicos Opioides/efeitos adversos , Infecções por HIV/complicações , Infecções por HIV/virologia , Doenças do Sistema Nervoso/etiologia , Animais , Terapia Antirretroviral de Alta Atividade , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Suscetibilidade a Doenças , Infecções por HIV/tratamento farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/terapia , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/terapia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
J Leukoc Biol ; 104(6): 1049-1059, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29791013

RESUMO

HIV infection of the CNS causes neuroinflammation and damage that contributes to the development of HIV-associated neurocognitive disorders (HAND) in greater than 50% of HIV-infected individuals, despite antiretroviral therapy (ART). Opioid abuse is a major risk factor for HIV infection. It has been shown that opioids can contribute to increased HIV CNS pathogenesis, in part, by modulating the function of immune cells. HIV enters the CNS within two weeks after peripheral infection by transmigration of infected monocytes across the blood brain barrier (BBB). CD14+ CD16+ monocytes are a mature subpopulation that is increased in number in the peripheral blood of HIV-infected people. Mature monocytes can be productively infected with HIV, and they transmigrate preferentially across the BBB in response to CCL2, a chemokine elevated in the CNS and CSF of HIV-infected people even with ART. Buprenorphine, an opioid derivate, is an opioid replacement therapy for heroin addiction. It is a partial agonist of µ-opioid receptor and full antagonist of κ-opioid receptor. The effects of buprenorphine on CCL2-mediated CD14+ CD16+ monocytes transmigration across the BBB, a critical mechanism that promotes neuroinflammation and HAND, have not been characterized. We showed for the first time that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration. We propose that buprenorphine treatment in the context of HIV infection could serve a dual purpose, to treat opioid addiction and also to reduce neuroinflammation. Additionally, buprenorphine may be used as a treatment for HAND not only in the context of opioid abuse.


Assuntos
Buprenorfina/farmacologia , Quimiocina CCL2/fisiologia , Monócitos/efeitos dos fármacos , Receptores Opioides mu/agonistas , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/prevenção & controle , Buprenorfina/uso terapêutico , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Proteínas Ligadas por GPI/análise , Humanos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/metabolismo , Receptores de Lipopolissacarídeos/análise , Monócitos/citologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Receptores de IgG/análise , Receptores Opioides kappa/antagonistas & inibidores , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
PLoS One ; 12(6): e0179882, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640909

RESUMO

Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.


Assuntos
Complexo AIDS Demência/imunologia , Regulação da Expressão Gênica , Macrófagos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Complemento C5/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/virologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Citocinas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
6.
Curr HIV Res ; 14(5): 417-430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27009099

RESUMO

BACKGROUND: HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. CONCLUSION: Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection.


Assuntos
Complexo AIDS Demência/fisiopatologia , Analgésicos Opioides/administração & dosagem , Infecções por HIV/complicações , Quimioterapia de Manutenção , Antagonistas de Entorpecentes/administração & dosagem , Entorpecentes/administração & dosagem , Abuso de Substâncias por Via Intravenosa/complicações , Barreira Hematoencefálica , Buprenorfina/administração & dosagem , Movimento Celular , Humanos , Metadona/administração & dosagem , Monócitos/virologia , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico
7.
J Cell Sci ; 127(Pt 15): 3382-95, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24895402

RESUMO

In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles.


Assuntos
Dendritos/metabolismo , Dendritos/ultraestrutura , Retículo Endoplasmático/metabolismo , Neurônios GABAérgicos/metabolismo , Giro Para-Hipocampal/fisiologia , Receptores de GABA-B/metabolismo , Transmissão Sináptica , Animais , Células Cultivadas , Difusão , Dineínas/metabolismo , Feminino , Neurônios GABAérgicos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/genética , Imagem com Lapso de Tempo
8.
Biochem Biophys Res Commun ; 430(3): 1114-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23257162

RESUMO

Fluorescent protein (FP) technologies suitable for use within the eukaryotic secretory pathway are essential for live cell and protein dynamic studies. Localization of FPs within the endoplasmic reticulum (ER) lumen has potentially significant consequences for FP function. All FPs are resident cytoplasmic proteins and have rarely been evolved for the chemically distinct environment of the ER lumen. In contrast to the cytoplasm, the ER lumen is oxidizing and the site where secretory proteins are post-translationally modified by disulfide bond formation and N-glycosylation on select asparagine residues. Cysteine residues and N-linked glycosylation consensus sequences were identified within many commonly utilized FPs. Here, we report mTagBFP is post-translationally modified when localized to the ER lumen. Our findings suggest these modifications can grossly affect the sensitivity and reliability of FP tools within the secretory pathway. To optimize tools for studying events in this important intracellular environment, we modified mTagBFP by mutating its cysteines and consensus N-glycosylation sites. We report successful creation of a secretory pathway-optimized blue FP, secBFP2.


Assuntos
Cisteína/química , Células Eucarióticas/metabolismo , Proteínas Luminescentes/química , Via Secretória , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Cisteína/genética , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
9.
PLoS One ; 7(8): e44168, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952914

RESUMO

In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA) type B receptors (GABA(B)Rs) are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABA(B)Rs are obligatory heteromers constituted by two subunits, GABA(B)R1 and GABA(B)R2. GABA(B)R1a and GABA(B)R1b are the most abundant subunit variants. GABA(B)R1b is located in the somatodendritic domain whereas GABA(B)R1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABA(B)R1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABA(B)Rs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABA(B)R1a operate in a pre-Golgi compartment. In the axon GABA(B)R1a subunits are enriched in the endoplasmic reticulum (ER), and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC) suggest that they employ a local secretory route. The transport of axonal GABA(B)R1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABA(B)Rs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.


Assuntos
Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Cinesinas/metabolismo , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Compartimento Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Feminino , Complexo de Golgi/metabolismo , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/química
10.
Mol Cell Neurosci ; 48(4): 269-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21782949

RESUMO

The highly polarized morphology and complex geometry of neurons is determined to a great extent by the structural and functional organization of the secretory pathway. It is intuitive to propose that the spatial arrangement of secretory organelles and their dynamic behavior impinge on protein trafficking and neuronal function, but these phenomena and their consequences are not well delineated. Here we analyze the architecture and motility of the archetypal endoplasmic reticulum (ER), and their relationship to the microtubule cytoskeleton and post-translational modifications of tubulin. We also review the dynamics of the ER in axons, dendrites and spines, and discuss the role of ER dynamics on protein mobility and trafficking in neurons.


Assuntos
Retículo Endoplasmático/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Animais , Movimento Celular , Citoesqueleto/metabolismo , Modelos Neurológicos , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia
11.
Proc Natl Acad Sci U S A ; 107(31): 13918-23, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643948

RESUMO

Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substrate of AMP-dependent protein kinase (AMPK). NMDA-R activation leads to a rapid increase in phosphorylation of S783, followed by a slower dephosphorylation, which results from the activity of AMPK and protein phosphatase 2A, respectively. Agonist activation of GABABRs counters the effects of NMDA. Thus, NMDA-R activation alters the phosphorylation state of S783 and acts as a molecular switch to decrease the abundance of GABABRs at the neuronal plasma membrane. Such a mechanism may be of significance during synaptic plasticity or pathological conditions, such as ischemia or epilepsy, which lead to prolonged activation of glutamate receptors.


Assuntos
Endocitose , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Fosforilação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...