Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(38): 14192-14202, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713191

RESUMO

The detection of single nucleotide polymorphisms (SNPs) is of increasing importance in many areas including clinical diagnostics, patient stratification for pharmacogenomics, and advanced forensic analysis. In the work reported, we apply a semiautomated system for solid-phase electrochemical melting curve analysis (éMCA) for the identification of the allele present at a specific SNP site associated with an increased risk of bone fracture and predisposition to osteoporosis. Asymmetric isothermal recombinase polymerase amplification using ferrocene labeled forward primers was employed to generate single stranded redox labeled amplicons. In a first approach to demonstrate the proof of concept of combining asymmetric RPA with solid-phase éMCA, a simplified system housing a multielectrode array within a polymeric microsystem, sandwiched between two aluminum plates of a heater device, was used. Sample manipulation through the microfluidic channel was controlled by a syringe pump, and an external Ag/AgCl reference electrode was employed. Individual electrodes of the array were functionalized with four different oligonucleotide probes, each probe equivalent in design with the exception of the middle nucleotide. The isothermally generated amplicons were allowed to hybridize to the surface-tethered probes and subsequently subjected to a controlled temperature ramp, and the melting of the duplex was monitored electrochemically. A clear difference between the fully complementary and a single mismatch was observed. Having demonstrated the proof-of-concept, a device for automated éMCA with increased flexibility to house diverse electrode arrays with internal quasi-gold reference electrodes, higher resolution, and broader melting temperature range was developed and exploited for the detection of SNP hetero/homozygosity. Using the optimized conditions, the system was applied to the identification of the allele present at an osteoporosis associated SNP site, rs2741856, in 10 real fingerprick/venous blood samples, with results validated using Sanger sequencing.


Assuntos
Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Osteoporose/genética , Coleta de Amostras Sanguíneas , Alelos
2.
ACS Cent Sci ; 9(8): 1591-1602, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637735

RESUMO

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

3.
Anal Chim Acta ; 1252: 341042, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-36935136

RESUMO

The overall objective of this work is the evaluation of different competitive aptamer assays based on inductively coupled plasma mass spectrometry (ICP-MS) detection for the determination of ß-conglutin (food protein allergen from lupin) in flour samples. To this end, two competitive aptamer assay schemes were developed using either thiolated aptamers chemisorbed onto gold nanoparticles (AuNPs) or biotinylated aptamers linked to streptavidin-AuNPs. The influence of ICP-MS detection mode (i.e., conventional vs single particle) on assay performance was explored. In the case of the thiolated aptamer, the limit of detection (LoD) obtained using the single particle mode was improved 2-fold as compared to the LoD provided by the conventional mode. With regards to the biotinylated aptamer, the use of the conventional mode provided a 5-fold improvement of LoD as compared to that obtained for the single particle one. Using the optimized conditions, the best LoD of 2 pM was obtained with the biotinylated aptamer operating with conventional ICP-MS detection. When compared to previous reports using the same aptamer in a competitive assay, the developed method significantly improved the LoD by at least an order of magnitude. Different flour samples containing lupin were successfully analyzed according to European Conformity guidelines for the analysis of food contaminants.


Assuntos
Aptâmeros de Nucleotídeos , Lupinus , Nanopartículas Metálicas , Ouro/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/química , Alérgenos/análise , Lupinus/química , Espectrometria de Massas
4.
Biosensors (Basel) ; 12(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36551028

RESUMO

Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC). Recently, nano-enabled biosensors integrating highly selective optical detection techniques and specificity of aptamers have been widely developed for the rapid detection of various targets. This study reports on the development of a rapid gold nanoparticles (AuNPs)-based aptasensor for the detection of RBP4. The retinol-binding protein aptamer (RBP-A) is adsorbed on the surface of the AuNPs through van der Waals and hydrophobic interactions, stabilizing the AuNPs against sodium chloride (NaCl)-induced aggregation. Upon the addition of RBP4, the RBP-A binds to RBP4 and detaches from the surface of the AuNPs, leaving the AuNPs unprotected. Addition of NaCl causes aggregation of AuNPs, leading to a visible colour change of the AuNPs solution from ruby red to purple/blue. The test result was available within 5 min and the assay had a limit of detection of 90.76 ± 2.81 nM. This study demonstrates the successful development of a simple yet effective, specific, and colorimetric rapid assay for RBP4 detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Cloreto de Sódio , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Proteínas Plasmáticas de Ligação ao Retinol
5.
Biosensors (Basel) ; 12(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36354481

RESUMO

Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen ß-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where ß-conglutin was immobilized on the wells of a microtiter plate, competing with ß-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Biotina , Ressonância de Plasmônio de Superfície , Ouro/química
6.
Anal Biochem ; 658: 114937, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202193

RESUMO

The illicit use of anabolic androgenic steroids (AAS) as performance-enhancing drugs remains a global issue threatening not only the credibility of competitive sports but also public health due to the well-documented adverse effects they elicit. AAS abuse is not restricted only to professional sports, but also extends to recreational athletes and adolescents as well as in livestock production as growth-promoting agents. Testosterone and nandrolone are among the AAS most frequently exploited. Gas chromatography-mass spectrometry is the reference method for AAS detection, but it is strictly laboratory-based and cannot be performed on-site. The great potential of aptamers in bioanalytical applications and specifically for the development of simple analytical tools suitable for on-site analysis has been extensively documented. In this report, we describe the selection and identification of aptamers binding nandrolone, exhibiting affinity dissociation constants in the low nanomolar range. A label-free colorimetric assay based on gold nanoparticles was developed using one of these novel aptamers for the detection of nandrolone and/or its metabolites. The assay could be deployed for the rapid, on-site, facile and cost-effective screening of samples and provide qualitative visual results with a red to purple/blue color change being indicative of a positive result.


Assuntos
Anabolizantes , Dopagem Esportivo , Nanopartículas Metálicas , Nandrolona , Substâncias para Melhoria do Desempenho , Humanos , Adolescente , Nandrolona/análise , Anabolizantes/análise , Colorimetria , Ouro , Congêneres da Testosterona , Testosterona
7.
Biosens Bioelectron ; 198: 113825, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838372

RESUMO

Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 µL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.


Assuntos
Técnicas Biossensoriais , Recombinases , DNA/genética , Humanos , Metalocenos , Polimorfismo de Nucleotídeo Único , Recombinases/genética
8.
ACS Omega ; 6(51): 35657-35666, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34957366

RESUMO

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections. Antigen tests, targeting the spike (S) or nucleocapsid (N) viral proteins, are considered as complementary tools. Despite their shortcomings in terms of sensitivity and specificity, antigen tests could be deployed for the detection of potentially contagious individuals with high viral loads. In this work, we sought to develop a sandwich aptamer-based assay for the detection of the S protein of SARS-CoV-2. A detailed study on the binding properties of aptamers to the receptor-binding domain of the S protein in search of aptamer pairs forming a sandwich is presented. Screening of aptamer pairs and optimization of assay conditions led to the development of a laboratory-based sandwich assay able to detect 21 ng/mL (270 pM) of the protein with negligible cross-reactivity with the other known human coronaviruses. The detection of 375 pg of the protein in viral transport medium demonstrates the compatibility of the assay with clinical specimens. Finally, successful detection of the S antigen in nasopharyngeal swab samples collected from suspected patients further establishes the suitability of the assay for screening purposes as a complementary tool to assist in the control of the pandemic.

9.
ACS Sens ; 6(12): 4398-4407, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34797987

RESUMO

Here, we report the electrochemical detection of single-point mutations using solid-phase isothermal primer elongation with redox-labeled oligonucleotides. A single-base mutation associated with resistance to rifampicin, an antibiotic commonly used for the treatment of Mycobacterium tuberculosis, was used as a model system to demonstrate a proof-of-concept of the approach. Four 5'-thiolated primers, designed to be complementary with the same fragment of the target sequence and differing only in the last base, addressing the polymorphic site, were self-assembled via chemisorption on individual gold electrodes of an array. Following hybridization with single-stranded DNA, Klenow (exo-) DNA polymerase-mediated primer extension with ferrocene-labeled 2'-deoxyribonucleoside triphosphates (dNFcTPs) was only observed to proceed at the electrode where there was full complementarity between the surface-tethered probe and the target DNA being interrogated. We tested all four ferrocenylethynyl-linked dNTPs and optimized the ratio of labeled/natural nucleotides to achieve maximum sensitivity. Following a 20 min hybridization step, Klenow (exo-) DNA polymerase-mediated primer elongation at 37 °C for 5 min was optimal for the enzymatic incorporation of a ferrocene-labeled nucleotide, achieving unequivocal electrochemical detection of a single-point mutation in 14 samples of genomic DNA extracted from Mycobacterium tuberculosis strains. The approach is rapid, cost-effective, facile, and can be extended to multiplexed electrochemical single-point mutation genotyping.


Assuntos
Mycobacterium tuberculosis , Metalocenos , Mycobacterium tuberculosis/genética , Oxirredução , Rifampina/farmacologia , Polimorfismo de Nucleotídeo Único
10.
Anal Chem ; 93(44): 14578-14585, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704755

RESUMO

Isothermal recombinase polymerase amplification-based solid-phase primer extension is used for the optical detection of a hypertrophic cardiomyopathy associated single nucleotide polymorphism (SNP) in a fingerprick blood sample. The assay exploits four thiolated primers which have the same sequences with the exception of the 3'-terminal base. Target DNA containing the SNP site hybridizes to all four of the immobilized probes, with primer extension only taking place from the primer containing the terminal base that is complementary to the SNP under interrogation. Biotinylated deoxynucleotide triphosphates are used in the primer extension, allowing postextension addition of streptavidin-poly-horseradish peroxidase to bind to the incorporated biotinylated dNTPs. The signal generated following substrate addition can then be measured optically. The percentage of biotinylated dNTPs and the duration of primer extension is optimized and the system applied to the identification of a SNP in a fingerprick blood sample. A methodology of thermal lysis using a 1 in 5 dilution of the fingerprick blood sample prior to application of 95 °C for 30 s is used to extract genomic DNA, which is directly used as a template for solid-phase primer extension on microtiter plates, followed by optical detection. The SNP in the fingerprick sample was identified and its identity corroborated using ion torrent next generation sequencing. Ongoing work is focused on extension to the multiplexed detection of SNPs in fingerprick and other biological samples.


Assuntos
DNA , Polimorfismo de Nucleotídeo Único , DNA/genética , Primers do DNA , Técnicas Genéticas , Nucleotídeos , Polimorfismo de Nucleotídeo Único/genética
11.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498970

RESUMO

In previous work, a 93-mer aptamer was selected against the anaphylactic allergen, ß-conglutin and truncated to an 11-mer, improving the affinity by two orders of magnitude, whilst maintaining the specificity. This 11-mer was observed to fold in a G-quadruplex, and preliminary results indicated the existence of a combination of monomeric and higher-order structures. Building on this previous work, in the current study, we aimed to elucidate a deeper understanding of the structural forms of this 11-mer and the effect of the structure on its binding ability. A battery of techniques including polyacrylamide gel electrophoresis, high-performance liquid chromatography in combination with electrospray ionization time-of-flight mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight, thermal binding analysis, circular dichroism and nuclear magnetic resonance were used to probe the structure of both the 11-mer and the 11-mer flanked with TT- at either the 5' or 3' end or at both ends. The TT-tail at the 5' end hinders stacking effects and effectively enforces the 11-mer to maintain a monomeric form. The 11-mer and the TT- derivatives of the 11-mer were also evaluated for their ability to bind its cognate target using microscale thermophoresis and surface plasmon resonance, and biolayer interferometry confirmed the nanomolar affinity of the 11-mer. All the techniques utilized confirmed that the 11-mer was found to exist in a combination of monomeric and higher-order structures, and that independent of the structural form present, nanomolar affinity was observed.


Assuntos
Alérgenos , Antígenos de Plantas/química , Aptâmeros de Nucleotídeos/química , Quadruplex G , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Antígenos de Plantas/imunologia , Aptâmeros de Nucleotídeos/metabolismo , Globulinas/imunologia , Estrutura Molecular , Conformação de Ácido Nucleico , Proteínas de Armazenamento de Sementes/imunologia , Proteínas de Soja/imunologia
12.
Anal Chim Acta ; 1112: 54-61, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32334682

RESUMO

Due to the extreme infectivity of Yersinia pestis it poses a serious threat as a potential biowarfare agent, which can be rapidly and facilely disseminated. A cost-effective and specific method for its rapid detection at extremely low levels is required, in order to facilitate a timely intervention for containment. Here, we report an ultrasensitive method exploiting a combination of isothermal nucleic acid amplification with a tailed forward primer and biotinylated dNTPs, which is performed in less than 30 min. The polymerase chain reaction (PCR) and enzyme linked oligonucleotide assay (ELONA) were used to optimise assay parameters for implementation on the LFA, and achieved detection limits of 45 pM and 940 fM using SA-HRP and SA-polyHRP, respectively. Replacing PCR with isothermal amplification, namely recombinase polymerase amplification, similar signals were obtained (314 fM), with just 15 min of amplification. The lateral flow detection of the isothermally amplified and labelled amplicon was then explored and detection limits of 7 fM and 0.63 fg achieved for synthetic and genomic DNA, respectively. The incorporation of biotinylated dNTPs and their exploitation for the ultrasensitive molecular detection of a nucleic acid target has been demonstrated and this generic platform can be exploited for a multitude of diverse real life applications.


Assuntos
Desoxirribonucleotídeos/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Yersinia pestis/isolamento & purificação , Biotinilação , Desoxirribonucleotídeos/genética , Reação em Cadeia da Polimerase , Yersinia pestis/genética
13.
ACS Omega ; 4(23): 20188-20196, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31815219

RESUMO

Aptamers are well-established biorecognition molecules used in a wide variety of applications for the detection of their respective targets. However, individual SELEX processes typically performed for the identification of aptamers for each target can be quite time-consuming, labor-intensive, and costly. An alternative strategy is proposed herein for the simultaneous identification of different aptamers binding distinct but structurally similar targets in one single selection. This one-pot SELEX approach, using the steroids estradiol, progesterone, and testosterone as model targets, was achieved by combining the benefits of counter-SELEX with the power of next-generation sequencing and bioinformatics analysis. The pools from the last stage of the selection were compared in order to discover sequences with preferential abundance in only one of the pools. This led to the identification of aptamer candidates with potential specificity to a single steroid target. Binding studies demonstrated the high affinity of each selected aptamer for its respective target, and low nanomolar range dissociation constants calculated were similar to those previously reported for steroid-binding aptamers selected using traditional SELEX approaches. Finally, the selected aptamers were exploited in microtiter plate assays, achieving nanomolar limits of detection, while the specificity of these aptamers was also demonstrated. Overall, the one-pot SELEX strategy led to the discovery of aptamers for three different steroid targets in one single selection without compromising their affinity or specificity, demonstrating the power of this approach of aptamer discovery for the simultaneous selection of aptamers against multiple targets.

14.
Anal Chem ; 91(11): 7104-7111, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31042376

RESUMO

The importance of histamine in various physiological functions and its involvement in allergenic responses make this small molecule one of the most studied biogenic amines. Even though a variety of chromatography-based methods have been described for its analytical determination, the disadvantages they present in terms of cost, analysis time, and low portability limit their suitability for in situ routine testing. In this work, we sought to identify histamine-binding aptamers that could then be exploited for the development of rapid, facile, and sensitive assays for histamine detection suitable for point-of-need analysis. A classic SELEX process was designed employing magnetic beads for target immobilization and the selection was completed after ten rounds. Following Next Generation Sequencing of the last selection rounds from both positive and counter selection magnetic beads, several sequences were identified and initially screened using an apta-PCR affinity assay (APAA). Structural and functional characterization of the candidates resulted in the identification of the H2 aptamer. The high binding affinity of the H2 aptamer to histamine was validated using four independent assays ( KD of 3-34 nM). Finally, the H2 aptamer was used for the development of a magnetic beads-based competitive assay for the detection of histamine in both buffer and synthetic urine, achieving very low limits of detection of 18 pM and 76 pM, respectively, while no matrix effects were observed. These results highlight the suitability of the strategy followed for identifying small molecule-binding aptamers and the compatibility of the selected H2 aptamer with the analysis of biological samples, thus facilitating the development of point-of-care devices for routine testing. Ongoing work is focused on extending the application of the H2 aptamer to the detection of spoilage in meat, fish, and beverages, as well as evaluating the affinity of truncated forms of the aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Histamina/análise , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/metabolismo , Ligação Competitiva , Calibragem , Dicroísmo Circular , Sequenciamento de Nucleotídeos em Larga Escala , Histamina/metabolismo , Histamina/urina , Limite de Detecção , Fenômenos Magnéticos , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes
15.
ACS Omega ; 4(26): 21900-21908, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891068

RESUMO

We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.

16.
Anal Chem ; 90(21): 12745-12751, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296053

RESUMO

High-risk pathogens such as Francisella tularensis and Yersinia pestis are categorized as highly hazardous organisms that can be used as biological weapons. Given the extreme infectivity of these potential biowarfare agents, a rapid, sensitive, cost-effective, and specific method for their detection is required. Here, we report the multiplexed amplification detection of genomic DNA from Francisella tularensis and Yersinia pestis. Amplification was achieved using isothermal recombinase polymerase amplification, exploiting tailed primers, followed by detection using a nucleic-acid lateral flow assay. Excess primers were removed using a novel fishing strategy, avoiding the use of postamplification purification that requires centrifugation and infers additional assay cost. The entire assay is completed in less than 1 h, achieving limits of detection of 243 fg (1.21 × 102 genome equivalent) and 4 fg (0.85 genome equivalent) for Francisella tularensis and Yersinia pestis, respectively.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Bioensaio/métodos , DNA/genética , Francisella tularensis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Yersinia pestis/isolamento & purificação , DNA/isolamento & purificação , Proteínas de Ligação a DNA/química , Endopeptidase K/química , Francisella tularensis/genética , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Proteólise , Yersinia pestis/genética
17.
Anal Chim Acta ; 1039: 140-148, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30322545

RESUMO

Karlodinium is a dinoflagellate responsible for fish-killing events worldwide. In Alfacs Bay (NW Mediterranean Sea), the presence of two Karlodinium species (K. veneficum and K. armiger) with different toxicities has been reported. This work presents a method that combines recombinase polymerase amplification (RPA) with an enzyme-linked oligonucleotide assay (ELONA) to identify, discriminate and quantify these two species. The system was characterised using synthetic DNA and genomic DNA, and the specificity was confirmed by cross-reactivity experiments. Calibration curves were constructed using 10-fold dilutions of cultured cells, attaining a limit of detection of around 50,000 cells/L, far below the Karlodinium spp. alert threshold (200,000 cells/L). Finally, the assay was applied to spiked seawater samples, showing an excellent correlation with the spiking levels and light microscopy counts. This approach is more rapid, specific and user-friendly than traditional microscopy techniques, and shows great promise for the surveillance and management of harmful algal blooms.


Assuntos
Ensaio de Imunoadsorção Enzimática , Toxinas Marinhas/análise , Microalgas/química , Oligonucleotídeos/química , Reação em Cadeia da Polimerase em Tempo Real , Oligonucleotídeos/metabolismo
18.
Anal Biochem ; 556: 16-22, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920236

RESUMO

DNA biosensors are attractive tools for genetic analysis as there is an increasing need for rapid and low-cost DNA analysis, primarily driven by applications in personalized pharmacogenomics, clinical diagnostics, rapid pathogen detection, food traceability and forensics. A rapid electrochemical genosensor detection methodology exploiting a combination of modified primers for solution-phase isothermal amplification, followed by rapid detection via hybridization on gold electrodes is reported. Modified reverse primers, exploiting a C18 spacer between the primer-binding site and an engineered single stranded tail, are used in a recombinase polymerase amplification reaction to produce an amplicon with a central duplex flanked by two single stranded tails. These tails are designed to be complementary to a gold electrode tethered capture oligo probe as well as a horseradish peroxidase labelled reporter oligo probe. The time required for hybridization of the isothermally generated amplicons with each of the immobilized and reporter probes was optimised to be 2 min, in both cases. The effect of amplification time and the limit of detection were evaluated using these hybridization times for both single stranded and double stranded DNA templates. The best detection limit of 70 fM for a ssDNA template was achieved using 45 min amplification, whilst for a dsDNA template, just 30 min amplification resulted in a slightly lower detection limit of 14 fM, whilst both 20 and 45 min amplification times were observed to provide detection limits of 71 and 72 fM, respectively, but 30 and 45 min amplification resulted in a much higher signal and sensitivity. The genosensor was applied to genomic DNA and real patient and control blood samples for detection of the coeliac disease associated DQB1*02 HLA allele, as a model system, demonstrating the possibility to carry out molecular diagnostics, combining amplification and detection in a rapid and facile manner.


Assuntos
Doença Celíaca/genética , Primers do DNA/genética , Técnicas Eletroquímicas/métodos , Cadeias beta de HLA-DQ/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Alelos , Humanos
19.
J Steroid Biochem Mol Biol ; 167: 14-22, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27669644

RESUMO

The rapid and sensitive detection of small molecules is garnering increasing importance, and aptamers show great promise in replacing expensive, elaborate detection platforms exploiting chromatographic separation or antibody-based assays. The characterization of aptamer interaction with small molecule targets is not facile, and there is a mature need for a rapid, high-throughput technique for the analysis of aptamer-small molecule kinetics and affinity. In this work we present methodologies for the evaluation of aptamer-small molecule interactions, using the aptamers reported against the steroid 17ß-estradiol as a model system. Microscale thermophoresis, apta-PCR affinity assay and surface plasmon resonance were explored to evaluate the reported aptamers' binding properties in terms of affinity and specificity, and were demonstrated to be successfully applied to the analysis of aptamer-small molecule interactions.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Estradiol/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Sítios de Ligação , Relação Dose-Resposta a Droga , Quadruplex G , Humanos , Interferometria , Cinética , Ligantes , Magnetismo , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , Progesterona/química , Ligação Proteica , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície
20.
Anal Bioanal Chem ; 409(1): 143-149, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27766362

RESUMO

Lupin is increasingly being used in a variety of food products due to its nutritional, functional and nutraceutical properties. However, several examples of severe and even fatal food-associated anaphylaxis due to lupin inhalation or ingestion have been reported, resulting in the lupin subunit ß-conglutin, being defined as the Lup an 1 allergen by the International Union of Immunological Societies (IUIS) in 2008. Here, we report an innovative method termed aptamer-recombinase polymerase amplification (Apta-RPA) exploiting the affinity and specificity of a DNA aptamer selected against the anaphylactic ß-conglutin allergen termed ß-conglutin binding aptamer II (ß-CBA II), facilitating ultrasensitive detection via isothermal amplification. Combining magnetic beads as the solid phase with Apta-RPA detection, the total assay time was reduced from 210 min to just 25 min, with a limit of detection of 3.5 × 10-11 M, demonstrating a rapid and ultrasensitive generic methodology that can be used with any aptamer. Future work will focus on further simplification of the assay to a lateral flow format. Graphical Abstract Schematic representation of the rapid and novel bead-based Apta-RPA assay.


Assuntos
Alérgenos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Lupinus/química , Proteínas de Armazenamento de Sementes/análise , Reação em Cadeia da Polimerase/métodos , Recombinases/química , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...