Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(21): 210805, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38072607

RESUMO

A spin-photon interface should operate with both coherent photons and a coherent spin to enable cluster-state generation and entanglement distribution. In high-quality devices, self-assembled GaAs quantum dots are near-perfect emitters of on-demand coherent photons. However, the spin rapidly decoheres via the magnetic noise arising from the host nuclei. Here, we address this drawback by implementing an all-optical nuclear-spin cooling scheme on a GaAs quantum dot. The electron-spin coherence time increases 156-fold from T_{2}^{*}=3.9 ns to 0.608 µs. The cooling scheme depends on a non-collinear term in the hyperfine interaction. The results show that such a term is present even though the strain is low and no external stress is applied. Our work highlights the potential of optically active GaAs quantum dots as fast, highly coherent spin-photon interfaces.

2.
Nat Commun ; 14(1): 3977, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407552

RESUMO

Rapid, high-fidelity single-shot readout of quantum states is a ubiquitous requirement in quantum information technologies. For emitters with a spin-preserving optical transition, spin readout can be achieved by driving the transition with a laser and detecting the emitted photons. The speed and fidelity of this approach is typically limited by low photon collection rates and measurement back-action. Here we use an open microcavity to enhance the optical readout signal from a semiconductor quantum dot spin state, largely overcoming these limitations. We achieve single-shot readout of an electron spin in only 3 nanoseconds with a fidelity of (95.2 ± 0.7)%, and observe quantum jumps using repeated single-shot measurements. Owing to the speed of our readout, errors resulting from measurement-induced back-action have minimal impact. Our work reduces the spin readout-time well below both the achievable spin relaxation and dephasing times in semiconductor quantum dots, opening up new possibilities for their use in quantum technologies.

3.
Nat Phys ; 19(6): 857-862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323806

RESUMO

The interaction between photons and a single two-level atom constitutes a fundamental paradigm in quantum physics. The nonlinearity provided by the atom leads to a strong dependence of the light-matter interface on the number of photons interacting with the two-level system within its emission lifetime. This nonlinearity unveils strongly correlated quasiparticles known as photon bound states, giving rise to key physical processes such as stimulated emission and soliton propagation. Although signatures consistent with the existence of photon bound states have been measured in strongly interacting Rydberg gases, their hallmark excitation-number-dependent dispersion and propagation velocity have not yet been observed. Here we report the direct observation of a photon-number-dependent time delay in the scattering off a single artificial atom-a semiconductor quantum dot coupled to an optical cavity. By scattering a weak coherent pulse off the cavity-quantum electrodynamics system and measuring the time-dependent output power and correlation functions, we show that single photons and two- and three-photon bound states incur different time delays, becoming shorter for higher photon numbers. This reduced time delay is a fingerprint of stimulated emission, where the arrival of two photons within the lifetime of an emitter causes one photon to stimulate the emission of another.

4.
Nat Nanotechnol ; 17(8): 829-833, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35589820

RESUMO

Photonic quantum technology provides a viable route to quantum communication1,2, quantum simulation3 and quantum information processing4. Recent progress has seen the realization of boson sampling using 20 single photons3 and quantum key distribution over hundreds of kilometres2. Scaling the complexity requires architectures containing multiple photon sources, photon counters and a large number of indistinguishable single photons. Semiconductor quantum dots are bright and fast sources of coherent single photons5-9. For applications, a roadblock is the poor quantum coherence on interfering single photons created by independent quantum dots10,11. Here we demonstrate two-photon interference with near-unity visibility (93.0 ± 0.8)% using photons from two completely separate GaAs quantum dots. The experiment retains all the emission into the zero phonon line-only the weak phonon sideband is rejected; temporal post-selection is not employed. By exploiting quantum interference, we demonstrate a photonic controlled-not circuit and an entanglement with fidelity of (85.0 ± 1.0)% between photons of different origins. The two-photon interference visibility is high enough that the entanglement fidelity is well above the classical threshold. The high mutual coherence of the photons stems from high-quality materials, diode structure and relatively large quantum dot size. Our results establish a platform-GaAs quantum dots-for creating coherent single photons in a scalable way.

5.
Nat Nanotechnol ; 17(5): 436-437, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35474527

Assuntos
Lasers , Fótons , Luz
6.
Nat Commun ; 12(1): 6575, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772948

RESUMO

In a radiative Auger process, optical decay leaves other carriers in excited states, resulting in weak red-shifted satellite peaks in the emission spectrum. The appearance of radiative Auger in the emission directly leads to the question if the process can be inverted: simultaneous photon absorption and electronic demotion. However, excitation of the radiative Auger transition has not been shown, neither on atoms nor on solid-state quantum emitters. Here, we demonstrate the optical driving of the radiative Auger transition, linking few-body Coulomb interactions and quantum optics. We perform our experiments on a trion in a semiconductor quantum dot, where the radiative Auger and the fundamental transition form a Λ-system. On driving both transitions simultaneously, we observe a reduction of the fluorescence signal by up to 70%. Our results suggest the possibility of turning resonance fluorescence on and off using radiative Auger as well as THz spectroscopy with optics close to the visible regime.

7.
Phys Rev Lett ; 126(1): 013602, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480775

RESUMO

Solid-state quantum dots are promising candidates for efficient light-matter interfaces connecting internal spin degrees of freedom to the states of emitted photons. However, selection rules prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide we here experimentally demonstrate optical cyclicity up to ≈15 through photonic state engineering while achieving high fidelity spin initialization and coherent optical spin control. These capabilities pave the way towards scalable multiphoton entanglement generation and on-chip spin-photon gates.

8.
Nat Nanotechnol ; 16(4): 399-403, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33510454

RESUMO

A single-photon source is an enabling technology in device-independent quantum communication1, quantum simulation2,3, and linear optics-based4 and measurement-based quantum computing5. These applications employ many photons and place stringent requirements on the efficiency of single-photon creation. The scaling on efficiency is typically an exponential function of the number of photons. Schemes taking full advantage of quantum superpositions also depend sensitively on the coherence of the photons, that is, their indistinguishability6. Here, we report a single-photon source with a high end-to-end efficiency. We employ gated quantum dots in an open, tunable microcavity7. The gating provides control of the charge and electrical tuning of the emission frequency; the high-quality material ensures low noise; and the tunability of the microcavity compensates for the lack of control in quantum dot position and emission frequency. Transmission through the top mirror is the dominant escape route for photons from the microcavity, and this output is well matched to a single-mode fibre. With this design, we can create a single photon at the output of the final optical fibre on-demand with a probability of up to 57% and with an average two-photon interference visibility of 97.5%. Coherence persists in trains of thousands of photons with single-photon creation at a repetition rate of 1 GHz.

9.
Nat Commun ; 11(1): 4745, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958795

RESUMO

Quantum dots are both excellent single-photon sources and hosts for single spins. This combination enables the deterministic generation of Raman-photons-bandwidth-matched to an atomic quantum-memory-and the generation of photon cluster states, a resource in quantum communication and measurement-based quantum computing. GaAs quantum dots in AlGaAs can be matched in frequency to a rubidium-based photon memory, and have potentially improved electron spin coherence compared to the widely used InGaAs quantum dots. However, their charge stability and optical linewidths are typically much worse than for their InGaAs counterparts. Here, we embed GaAs quantum dots into an n-i-p-diode specially designed for low-temperature operation. We demonstrate ultra-low noise behaviour: charge control via Coulomb blockade, close-to lifetime-limited linewidths, and no blinking. We observe high-fidelity optical electron-spin initialisation and long electron-spin lifetimes for these quantum dots. Our work establishes a materials platform for low-noise quantum photonics close to the red part of the spectrum.

10.
Nat Nanotechnol ; 15(7): 558-562, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32541943

RESUMO

In a multi-electron atom, an excited electron can decay by emitting a photon. Typically, the leftover electrons are in their ground state. In a radiative Auger process, the leftover electrons are in an excited state and a redshifted photon is created1-4. In a semiconductor quantum dot, radiative Auger is predicted for charged excitons5. Here we report the observation of radiative Auger on trions in single quantum dots. For a trion, a photon is created on electron-hole recombination, leaving behind a single electron. The radiative Auger process promotes this additional (Auger) electron to a higher shell of the quantum dot. We show that the radiative Auger effect is a powerful probe of this single electron: the energy separations between the resonance fluorescence and the radiative Auger emission directly measure the single-particle splittings of the electronic states in the quantum dot with high precision. In semiconductors, these single-particle splittings are otherwise hard to access by optical means as particles are excited typically in pairs, as excitons. After the radiative Auger emission, the Auger carrier relaxes back to the lowest shell. Going beyond the original theoretical proposals, we show how applying quantum optics techniques to the radiative Auger photons gives access to the single-electron dynamics, notably relaxation and tunnelling. This is also hard to access by optical means: even for quasi-resonant p-shell excitation, electron relaxation takes place in the presence of a hole, complicating the relaxation dynamics. The radiative Auger effect can be exploited in other semiconductor nanostructures and quantum emitters in the solid state to determine the energy levels and the dynamics of a single carrier.

11.
Nat Nanotechnol ; 13(5): 398-403, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556004

RESUMO

The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

12.
Nano Lett ; 18(3): 1801-1806, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29494160

RESUMO

Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

13.
Nat Nanotechnol ; 10(9): 775-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214251

RESUMO

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

14.
Opt Express ; 22(25): 30992-1001, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607048

RESUMO

We present a statistical study of the Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from both single quantum emitters coupled to Anderson-localized cavities and directly from the cavities that are fed by multiple quantum dots. Strongly inhibited and enhanced decay rates are observed relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 4.5 ± 0.4 without applying any spectral tuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum Purcell factor of 23.8 ± 1.5 is recorded, which is at the onset of the strong-coupling regime. Our data quantify the potential of Anderson-localized cavities for controlling and enhancing the light-matter interaction strength in a photonic-crystal waveguide, which is of relevance for cavity quantum-electrodynamics experiments, efficient energy harvesting and random lasing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...