Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1158099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065740

RESUMO

Introduction: Histomorphometry of rodent metaphyseal trabecular bone, by histology or microCT, is generally restricted to the mature secondary spongiosa, excluding the primary spongiosa nearest the growth plate by imposing an 'offset'. This analyses the bulk static properties of a defined segment of secondary spongiosa, usually regardless of proximity to the growth plate. Here we assess the value of trabecular morphometry that is spatially resolved according to the distance 'downstream' of-and thus time since formation at-the growth plate. Pursuant to this, we also investigate the validity of including mixed primary-secondary spongiosal trabecular bone, extending the analysed volume 'upstream' by reducing the offset. Both the addition of spatiotemporal resolution and the extension of the analysed volume have potential to enhance the sensitivity of detection of trabecular changes and to resolve changes occurring at different times and locations. Method: Two experimental mouse studies of trabecular bone are used as examples of different factors influencing metaphyseal trabecular bone: (1) ovariectomy (OVX) and pharmacological prevention of osteopenia and (2) limb disuse induced by sciatic neurectomy (SN). In a third study into offset rescaling, we also examine the relationship between age, tibia length, and primary spongiosal thickness. Results: Bone changes induced by either OVX or SN that were early or weak and marginal were more pronounced in the mixed primary-secondary upstream spongiosal region than in the downstream secondary spongiosa. A spatially resolved evaluation of the entire trabecular region found that significant differences between experimental and control bones remained undiminished either right up to or to within 100 µm from the growth plate. Intriguingly, our data revealed a remarkably linear downstream profile for fractal dimension in trabecular bone, arguing for an underlying homogeneity of the (re)modelling process throughout the entire metaphysis and against strict anatomical categorization into primary and secondary spongiosal regions. Finally, we find that a correlation between tibia length and primary spongiosal depth is well conserved except in very early and late life. Conclusions: These data indicate that the spatially resolved analysis of metaphyseal trabecular bone at different distances from the growth plate and/or times since formation adds a valuable dimension to histomorphometric analysis. They also question any rationale for rejecting primary spongiosal bone, in principle, from metaphyseal trabecular morphometry.


Assuntos
Doenças Ósseas Metabólicas , Lâmina de Crescimento , Ratos , Feminino , Camundongos , Animais , Ratos Sprague-Dawley , Tíbia/diagnóstico por imagem , Tíbia/patologia , Osso e Ossos , Doenças Ósseas Metabólicas/patologia , Modelos Animais de Doenças
2.
R Soc Open Sci ; 8(6): 201401, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34113446

RESUMO

Changes in trabecular micro-architecture are key to our understanding of osteoporosis. Previous work focusing on structure model index (SMI) measurements have concluded that disease progression entails a shift from plates to rods in trabecular bone, but SMI is heavily biased by bone volume fraction. As an alternative to SMI, we proposed the ellipsoid factor (EF) as a continuous measure of local trabecular shape between plate-like and rod-like extremes. We investigated the relationship between EF distributions, SMI and bone volume fraction of the trabecular geometry in a murine model of disuse osteoporosis as well as from human vertebrae of differing bone volume fraction. We observed a moderate shift in EF median (at later disease stages in mouse tibia) and EF mode (in the vertebral samples with low bone volume fraction) towards a more rod-like geometry, but not in EF maximum and minimum. These results support the notion that the plate to rod transition does not coincide with the onset of bone loss and is considerably more moderate, when it does occur, than SMI suggests. A variety of local shapes not straightforward to categorize as rod or plate exist in all our trabecular bone samples.

3.
Osteoarthritis Cartilage ; 28(1): 102-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678663

RESUMO

OBJECTIVE: High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage. DESIGN: Bovine osteochondral plugs were prepared four ways: in phosphate-buffered saline (PBS) or 70% ethanol (EtOH), both with or without phosphotungstic acid (PTA) staining. Specimens were imaged with micro-CT following two protocols: 1) absorption contrast (AC) imaging 2) propagation phase-contrast (PPC) imaging. All samples were scanned in liquid. The contrast to noise ratio (C/N) of cellular features quantified scan quality and were statistically analysed. Cellular features resolved by micro-CT were validated by standard histology. RESULTS: The highest quality images were obtained using propagation phase-contrast imaging and PTA-staining in 70% EtOH. Cellular features were also visualised when stained in PBS and unstained in EtOH. Under all conditions PPC resulted in greater contrast than AC (p < 0.0001 to p = 0.038). Simultaneous imaging of cartilage and subchondral bone did not impede image quality. Corresponding features were located in both histology and micro-CT and followed the same distribution with similar density and roundness values. CONCLUSIONS: Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration.


Assuntos
Cartilagem Articular/ultraestrutura , Microtomografia por Raio-X/métodos , Animais , Cartilagem Articular/citologia , Bovinos , Condrócitos/ultraestrutura , Meios de Contraste , Imageamento Tridimensional/métodos , Microscopia de Contraste de Fase/métodos
4.
Bone Rep ; 8: 72-80, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904646

RESUMO

Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

5.
Eur Cell Mater ; 35: 281-299, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29790567

RESUMO

Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis.


Assuntos
Envelhecimento/fisiologia , Osso Cortical/irrigação sanguínea , Osso Cortical/diagnóstico por imagem , Síncrotrons , Tomografia Computadorizada por Raios X , Animais , Calcificação Fisiológica , Sobrevivência Celular , Feminino , Fíbula/irrigação sanguínea , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL , Osteócitos/citologia , Tíbia/irrigação sanguínea
6.
Osteoarthritis Cartilage ; 26(6): 807-817, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604337

RESUMO

OBJECTIVES: Human osteoarthritis (OA) is detected only at late stages. Male STR/Ort mice develop knee OA spontaneously with known longitudinal trajectory, offering scope to identify OA predisposing factors. We exploit the lack of overt OA in female STR/Ort and in both sexes of parental, control CBA mice to explore whether early divergence in tibial bone mass or shape are linked to emergent OA. METHOD: We undertook detailed micro-CT comparisons of trabecular and cortical bone, multiple structural/architectural parameters and finite element modelling (FEM) of the tibia from male and female STR/Ort and CBA mice at 8-10 (pre-OA), 18-20 (OA onset) and 40 + weeks (advanced OA) of age. RESULTS: We found higher trabecular bone mass in female STR/Ort than in either OA-prone male STR/Ort or non-prone CBA mice. Cortical bone, as expected, showed greater cross-sectional area in male than female CBA, which surprisingly was reversed in STR/Ort mice. STR/Ort also exhibited higher cortical bone mass than CBA mice. Our analyses revealed similar tibial ellipticity, yet greater predicted resistance to torsion in male than female CBA mice. In contrast, male STR/Ort exhibited greater ellipticity than both female STR/Ort and CBA mice at specific cortical sites. Longitudinal analysis revealed greater tibia curvature and shape deviations in male STR/Ort mice that coincided with onset and were more pronounced in late OA. CONCLUSION: Generalised higher bone mass in STR/Ort mice is more marked in non OA-prone females, but pre-OA divergence in bone shape is restricted to male STR/Ort mice in which OA develops spontaneously.


Assuntos
Osteoartrite , Caracteres Sexuais , Tíbia/anatomia & histologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos CBA
7.
J Musculoskelet Neuronal Interact ; 17(3): 218-225, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860424

RESUMO

OBJECTIVE: Short-term neurectomy-induced disuse (SN) has been shown to restore load responses in aged mice. We examined whether this restoration was further enhanced in both cortical and trabecular bone by simply extending the SN. METHODS: Following load:strain calibration, tibiae in female C57BL/J6 mice at 8, 14 and 20 weeks and 18 months (n=8/group) were loaded and bone changes measured. Effects of long-term SN examined in twenty-six 18 months-old mice, neurectomised for 5 or 100 days with/without subsequent loading. Cortical and trabecular responses were measured histomorphometrically or by micro-computed tomography. RESULTS: Loading increased new cortical bone formation, elevating cross-sectional area in 8, 14 and 20 week-old (p ⟨0.05), but not 18 month-old aged mice. Histomorphometry showed that short-term SN reinstated load-responses in aged mice, with significant 33% and 117% increases in bone accrual at 47% and 37%, but not 27% of tibia length. Cortical responses to loading was heightened and widespread, now evident at all locations, following prolonged SN (108, 167 and 98% at 47, 37 and 27% of tibial length, respectively). In contrast, loading failed to modify trabecular bone mass or architecture. CONCLUSIONS: Mechanoadaptation become deficient with ageing and prolonging disuse amplifies this response in cortical but not trabecular bone.


Assuntos
Adaptação Fisiológica/fisiologia , Osso Esponjoso/fisiopatologia , Osso Cortical/fisiopatologia , Osteogênese/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Denervação Muscular , Osteoporose/fisiopatologia , Estresse Mecânico
8.
J R Soc Interface ; 12(110): 0590, 2015 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26311315

RESUMO

The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on-off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Tíbia/metabolismo , Animais , Análise de Elementos Finitos , Camundongos , Suporte de Carga/fisiologia
9.
Bone ; 81: 277-291, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232374

RESUMO

PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing.


Assuntos
Envelhecimento/metabolismo , Densidade Óssea/fisiologia , Permeabilidade Capilar/fisiologia , Diferenciação Celular/fisiologia , Osteócitos/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , Porosidade , Tíbia/metabolismo
10.
Bone ; 76: 58-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25836764

RESUMO

The response of the skeleton to loading appears to be mediated through the activation of the Wnt/ß-catenin signaling pathway and osteocytes have long been postulated to be the primary mechanosensory cells in bone. To examine the kinetics of the mechanoresponse of bone and cell types involved in vivo, we performed forearm loading of 17-week-old female TOPGAL mice. ß-catenin signaling was observed only in embedded osteocytes, not osteoblasts, at 1h post-loading, spreading to additional osteocytes and finally to cells on the bone surface by 24h. This early activation at 1h appeared to be independent of receptor (Lrp5/6) mediated activation as it occurred in the presence of the inhibitors sclerostin and/or Dkk1. The COX-2 inhibitor, Carprofen, blocked the activation of ß-catenin signaling and decline in sclerostin positive osteocytes post-loading implying an important role for prostaglandin. In vitro, PI3K/Akt activation was shown to be required for ß-catenin nuclear translocation downstream from prostaglandin in MLO-Y4 osteocyte-like cells supporting this mechanism. Downstream targets of ß-catenin signaling, sclerostin and Dkk1, were also examined and found to be significantly downregulated in osteocytes in vivo at 24h post-loading. The pattern of initially activated osteocytes appeared random and in order to understand this heterogeneous expression, a novel finite element model of the strain field in the ulna was developed, which predicts highly variable local magnitudes of strain experienced by osteocytes. In summary, both in vivo and in vitro models show the rapid activation of ß-catenin in response to load through the early release of prostaglandin and that strain fields in the bone are extremely heterogeneous resulting in heterogeneous activation of the ß-catenin pathway in osteocytes in vivo.


Assuntos
Osteócitos/metabolismo , Prostaglandinas/metabolismo , Transdução de Sinais , Estresse Mecânico , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Feminino , Análise de Elementos Finitos , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Camundongos , beta Catenina/genética
11.
Endocrinology ; 156(4): 1362-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25646711

RESUMO

Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.


Assuntos
Densidade Óssea/genética , Osso e Ossos/metabolismo , Hormônio do Crescimento/genética , Animais , Peso Corporal/genética , Hormônio do Crescimento/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...