Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338785

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , Camundongos , Animais , Osteoclastos/patologia , MicroRNAs/genética , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Osteoblastos/patologia , Macrófagos/patologia , Antagomirs
2.
ACS Sustain Chem Eng ; 11(5): 1949-1961, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778522

RESUMO

The consequences of global warming call for a shift to circular manufacturing practices. In this context, carbon capture and utilization (CCU) has become a promising alternative toward a low-emitting chemical sector. This study addresses for the first time the design of an integrated CO2 refinery and compares it against the business-as-usual (BAU) counterpart. The refinery, which utilizes atmospheric CO2, comprises three synthesis steps and coproduces liquefied petroleum gas, olefins, aromatics, and methanol using technologies that were so far studied decoupled from each other, hence omitting their potential synergies. Our integrated assessment also considers two residual gas utilization (RGU) designs to enhance the refinery's efficiency. Our analysis shows that a centralized cluster with an Allam cycle for RGU can drastically reduce the global warming impact relative to the BAU (by ≈135%) while simultaneously improving impacts on human health, ecosystems, and resources, thereby avoiding burden-shifting toward human health previously observed in some CCU routes. These benefits emerge from (i) recycling CO2 from the cycle, amounting to 11.2% of the total feedstock, thus requiring less capture capacity, and (ii) reducing the electricity use while increasing heating as a trade-off. The performance of the integrated refinery depends on the national grid, while its high cost relative to the BAU is due to the use of expensive electrolytic H2 and atmospheric CO2 feedstock. Overall, our work highlights the importance of integrating CCU technologies within chemical clusters to improve their economic and environmental performance further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...