Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269631

RESUMO

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a significant public health challenge globally. SARS-CoV-2 is a novel virus, and what constitutes immunological responses in different human body sites in infected individuals is yet to be presented. We set to determine the various immune cell fractions in gargle solution, bronchoalveolar lavage fluid, nasopharyngeal, and urine samples post-SARS-CoV-2 infection in humans. Materials and methodsWe downloaded proteomics data from (https://www.ebi.ac.uk/pride/) with the following identifiers: PXD019423, n=3 (gargle solution), PXD018970, n=15 (urine), PXD022085, n=5 (Bronchoalveolar lavage fluid), PXD022889, n=18 (nasopharyngeal). MaxQuant was used for the peptide spectral matching using humans, and SARS-CoV-2 was downloaded from the UniProt database (Access date 9th January 2022). The protein count matrix was extracted from the proteins group file and used as an input for the cibersort for the immune cells fraction determination. ResultsThe body of individuals infected with the SARS-CoV-2 virus is characterized by different fractions of immune cells in Bronchoalveolar lavage fluid (BALF), nasopharyngeal, urine, and gargle solution. BALF has more abundant memory B cells, CD8, activated mast cells, and resting macrophages than urine, nasopharyngeal, and gargle solution. Our analysis also demonstrates that each body site comprises different immune cell fractions post-SARS-CoV-2 infection in humans. ConclusionDifferent body sites are characterized by different immune cells fractions in SARS-CoV-2 infected individuals. The findings in this study can inform public health policies and health professionals on treatment strategies and drive SARS-CoV-2 diagnosis procedures.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268611

RESUMO

BackgroundProteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the sarscov2 virus. To bridge the gap, our study aims to profile the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients. Materials and methodsWe downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: i) PXD019423, n=3 from Charles Tanford Protein Center in Germany. ii) PXD018970, n=15 from Beijing Proteome Research Centre, China. iii)PXD022085, n=5 from Huazhong University of Science and Technology, China, and iv) PXD022889, n=18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the peptide spectral matching using humans, and SARS-CoV-2 was downloaded from the UniProt database (access date 13th October 2021). ResultsThe individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overall, we identified 1809 proteins across the four different sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Garage solution and BALF had 38(5%) and 73(9.6%) unique proteins. ConclusionsUrine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...