Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(42)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35839666

RESUMO

In this paper, melting of long Al nanowires is studied using a phase field model in which deviatoric transformation strain described by a kinetic equation produces a promoting driving force for both melting and solidification and consequently, a lower melting temperature is resolved. The coupled system of the Ginzburg-Landau equation for solidification/melting transformation, the kinetic equation for the deviatoric transformation strain and elasticity equations are solved using the COMSOL finite element code to obtain the evolution of melt solution. A deviatoric strain kinetic coefficient is used which results in the same pressure as that calculated with the Laplace equation in a solid neglecting elastic stresses. The surface and bulk melting temperatures are calculated for different nanowire diameters without mechanical loading which shows a good agreement with existing MD and analytical results. For radiiR> 5 nm, a complete surface solid-melt interface is created which propagates to the center. For smaller radii, premelting occurs everywhere starting from the surface and the nanowire melts without creating the interface. The melting rate shows an inverse power relationship with radius forR< 15 nm. For melting under pressure, the model with constant bulk modulus results in an unphysical parabolic variation versus pressure in contrast to the almost linear increase of the melting temperature versus pressure from known MD simulations. Such drawback is resolved by considering the pressure dependence of the bulk modulus through the Murnaghan's equation due to which an almost linear increase of the melting temperature versus pressure is obtained. Also, a reduction of the interface width and a significant increase of the melting rate versus pressure are found. The presented model and results allow for a better understanding of the premelting and melting of different metallic nanowires with various loading conditions and structural defects.

2.
Nanoscale ; 11(46): 22243-22247, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742314

RESUMO

The phase field approach (PFA) for the interaction of fracture and martensitic phase transformation (PT) is developed, which includes the change in surface energy during PT and the effect of unexplored scale parameters proportional to the ratio of the widths of the crack surface and the phase interface, both at the nanometer scale. The variation of these two parameters causes unexpected qualitative and quantitative effects: shift of PT away from the crack tip, "wetting" of the crack surface by martensite, change in the structure and geometry of the transformed region, crack trajectory, and process of interfacial damage evolution, as well as transformation toughening. The results suggest additional parameters controlling coupled fracture and PTs.

3.
Nanoscale ; 6(1): 162-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24213214

RESUMO

There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3-20 times lower than the PT pressure and 2-12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of the HPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, this may lead to new transformation paths and phases, which are hidden during pressure induced PTs.

4.
Phys Rev Lett ; 107(17): 175701, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107539

RESUMO

Strong, surprising, and multifaceted effects of the width of the external surface layer Δ(ξ) and internal stresses on surface-induced pretransformation and phase transformations (PTs) are revealed. Using our further developed phase-field approach, we found that above some critical Δ(ξ)(*), a morphological transition from fully transformed layer to lack of surface pretransformation occurs for any transformation strain ε(t). It corresponds to a sharp transition to the universal (independent of ε(t)), strongly increasing the master relationship of the critical thermodynamic driving force for PT X(c) on Δ(ξ). For large ε(t), with increasing Δ(ξ), X(c) unexpectedly decreases, oscillates, and then becomes independent of ε(t). Oscillations are caused by morphological transitions of fully transformed surface nanostructure. A similar approach can be developed for internal surfaces (grain boundaries) and for various types of PTs and chemical reactions.

5.
Phys Rev Lett ; 105(16): 165701, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230982

RESUMO

The Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...