Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(10): 2705-2714, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597502

RESUMO

Genetically encoded biosensors are valuable for the optimization of small-molecule biosynthesis pathways, because they transduce the production of small-molecule ligands into a readout compatible with high-throughput screening or selection in vivo. However, engineering biosensors with appropriate response functions and ligand preferences remains challenging. Here, we show that the continuous hypermutation system, OrthoRep, can be effectively applied to evolve biosensors with a high dynamic range, reprogrammed activity toward desired noncognate ligands, and proper operational range for coupling to biosynthetic pathways. In particular, we encoded the allosteric transcriptional factor, BenM, on OrthoRep such that the propagation of host yeast cells resulted in BenM's rapid and continuous diversification. When these cells were subjected to cycles of culturing and sorting on BenM activity in the presence and absence of its cognate ligand, muconic acid, or the noncognate ligand, adipic acid, we obtained multiple BenM variants that respond to their corresponding ligands. These biosensors outperform previously engineered BenM-based biosensors by achieving a substantially greater dynamic range (up to ∼180-fold induction) and broadened operational range. The expression of select BenM variants in the presence of a muconic acid biosynthetic pathway demonstrated sensitive biosensor activation without saturating response, which should enable pathway and host engineering for higher production of muconic and adipic acids. Given the streamlined manner in which high-performance and versatile biosensors were evolved using OrthoRep, this study provides a template for generating custom biosensors for metabolic pathway engineering and other biotechnology goals.


Assuntos
Técnicas Biossensoriais , Evolução Molecular Direcionada , Ligantes , Engenharia Metabólica
2.
Microb Biotechnol ; 14(6): 2617-2626, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33645919

RESUMO

Directed evolution is a powerful method to optimize proteins and metabolic reactions towards user-defined goals. It usually involves subjecting genes or pathways to iterative rounds of mutagenesis, selection and amplification. While powerful, systematic searches through large sequence-spaces is a labour-intensive task, and can be further limited by a priori knowledge about the optimal initial search space, and/or limits in terms of screening throughput. Here, we demonstrate an integrated directed evolution workflow for metabolic pathway enzymes that continuously generate enzyme variants using the recently developed orthogonal replication system, OrthoRep and screens for optimal performance in high-throughput using a transcription factor-based biosensor. We demonstrate the strengths of this workflow by evolving a rate-limiting enzymatic reaction of the biosynthetic pathway for cis,cis-muconic acid (CCM), a precursor used for bioplastic and coatings, in Saccharomyces cerevisiae. After two weeks of simply iterating between passaging of cells to generate variant enzymes via OrthoRep and high-throughput sorting of best-performing variants using a transcription factor-based biosensor for CCM, we ultimately identified variant enzymes improving CCM titers > 13-fold compared with reference enzymes. Taken together, the combination of synthetic biology tools as adopted in this study is an efficient approach to debottleneck repetitive workflows associated with directed evolution of metabolic enzymes.


Assuntos
Ensaios de Triagem em Larga Escala , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácido Sórbico/análogos & derivados , Biologia Sintética
3.
Life (Basel) ; 10(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899502

RESUMO

Plant evolution has produced enzymes that may not be optimal for maximizing yield and quality in today's agricultural environments and plant biotechnology applications. By improving enzyme performance, it should be possible to alleviate constraints on yield and quality currently imposed by kinetic properties or enzyme instability. Enzymes can be optimized more quickly than naturally possible by applying directed evolution, which entails mutating a target gene in vitro and screening or selecting the mutated gene products for the desired characteristics. Continuous directed evolution is a more efficient and scalable version that accomplishes the mutagenesis and selection steps simultaneously in vivo via error-prone replication of the target gene and coupling of the host cell's growth rate to the target gene's function. However, published continuous systems require custom plasmid assembly, and convenient multipurpose platforms are not available. We discuss two systems suitable for continuous directed evolution of enzymes, OrthoRep in Saccharomyces cerevisiae and EvolvR in Escherichia coli, and our pilot efforts to adapt each system for high-throughput plant enzyme engineering. To test our modified systems, we used the thiamin synthesis enzyme THI4, previously identified as a prime candidate for improvement. Our adapted OrthoRep system shows promise for efficient plant enzyme engineering.

4.
ACS Synth Biol ; 8(6): 1249-1256, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31095905

RESUMO

We recently developed an orthogonal replication system (OrthoRep) in yeast that allows for the rapid continuous mutagenesis of a special plasmid without mutating the genome. Although OrthoRep has been successfully applied to evolve several proteins and enzymes, the generality of OrthoRep has not yet been systematically studied. Here, we show that OrthoRep is fully compatible with all Saccharomyces cerevisiae strains tested, demonstrate that the orthogonal plasmid can encode genetic material of at least 22 kb, and report a CRISPR/Cas9-based method for expedient genetic manipulations of OrthoRep. It was previously reported that the replication system upon which OrthoRep is based is only stable in respiration-deficient S. cerevisiae strains that have lost their mitochondrial genome (ρ0 strains). However, here we trace this biological incompatibility to the activity of the dispensable toxin/antitoxin system encoded on the wild-type orthogonal plasmid. Since the toxin/antitoxin system is replaced by genes of interest in any OrthoRep application, OrthoRep is a generally compatible platform for continuous in vivo evolution in S. cerevisiae.


Assuntos
Sistemas CRISPR-Cas/genética , Replicação do DNA/genética , Edição de Genes/métodos , Mutagênese Sítio-Dirigida/métodos , Biologia Sintética/métodos , Vetores Genéticos/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética
5.
Cell ; 175(7): 1946-1957.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30415839

RESUMO

Directed evolution is a powerful approach for engineering biomolecules and understanding adaptation. However, experimental strategies for directed evolution are notoriously labor intensive and low throughput, limiting access to demanding functions, multiple functions in parallel, and the study of molecular evolution in replicate. We report OrthoRep, an orthogonal DNA polymerase-plasmid pair in yeast that stably mutates ∼100,000-fold faster than the host genome in vivo, exceeding the error threshold of genomic replication that causes single-generation extinction. User-defined genes in OrthoRep continuously and rapidly evolve through serial passaging, a highly straightforward and scalable process. Using OrthoRep, we evolved drug-resistant malarial dihydrofolate reductases (DHFRs) in 90 independent replicates. We uncovered a more complex fitness landscape than previously realized, including common adaptive trajectories constrained by epistasis, rare outcomes that avoid a frequent early adaptive mutation, and a suboptimal fitness peak that occasionally traps evolving populations. OrthoRep enables a new paradigm of routine, high-throughput evolution of biomolecular and cellular function.


Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico , Modelos Genéticos , Taxa de Mutação , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
ACS Synth Biol ; 7(7): 1722-1729, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29969238

RESUMO

The yeast cytoplasmically localized pGKL1/TP-DNAP1 plasmid/DNA polymerase pair forms an orthogonal DNA replication system whose mutation rate can be drastically increased without influencing genomic replication, thereby supporting in vivo continuous evolution. Here, we report that the pGKL2/TP-DNAP2 plasmid/DNA polymerase pair forms a second orthogonal replication system. We show that custom genes can be encoded and expressed from pGKL2, that error-prone TP-DNAP2s can be engineered, and that pGKL2 replication by TP-DNAP2 is both orthogonal to genomic replication in Saccharomyces cerevisiae and mutually orthogonal with pGKL1 replication by TP-DNAP1. This demonstration of two mutually orthogonal DNA replication systems with tunable error rates and properties should enable new applications in cell-based continuous evolution, genetic recording, and synthetic biology at large.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Engenharia Metabólica/métodos , Plasmídeos/genética
7.
PLoS One ; 10(2): e0112969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723178

RESUMO

Molecular traffic between the nucleus and the cytoplasm is regulated by the nuclear pore complex (NPC), which acts as a highly selective channel perforating the nuclear envelope in eukaryotic cells. The human immunodeficiency virus (HIV) exploits the nucleocytoplasmic pathway to export its RNA transcripts across the NPC to the cytoplasm. Despite extensive study on the HIV life cycle and the many drugs developed to target this cycle, no current drugs have been successful in targeting the critical process of viral nuclear export, even though HIV's reliance on a single host protein, CRM1, to export its unspliced and partially spliced RNA transcripts makes it a tempting target. Due to recent findings implicating a DEAD-box helicase, DDX3, in HIV replication and a member of the export complex, it has become an appealing target for anti-HIV drug inhibition. In the present research, we have applied a hybrid computational protocol to analyze protein-protein interactions in the HIV mRNA export cycle. This method is based on molecular docking followed by molecular dynamics simulation and accompanied by approximate free energy calculation (MM/GBSA), computational alanine scanning, clustering, and evolutionary analysis. We highlight here some of the most likely binding modes and interfacial residues between DDX3 and CRM1 both in the absence and presence of RanGTP. This work shows that although DDX3 can bind to free CRM1, addition of RanGTP leads to more concentrated distribution of binding modes and stronger binding between CRM1 and RanGTP.


Assuntos
RNA Helicases DEAD-box/metabolismo , Produtos do Gene rev/metabolismo , Infecções por HIV/metabolismo , HIV-1 , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Replicação Viral , Proteína ran de Ligação ao GTP/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/química , Produtos do Gene rev/química , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Carioferinas/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Citoplasmáticos e Nucleares/química , Relação Estrutura-Atividade , Proteína ran de Ligação ao GTP/química , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...