Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463962

RESUMO

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

2.
Artigo em Inglês | MEDLINE | ID: mdl-38083493

RESUMO

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.


Assuntos
Encefalopatias , Corpo Caloso , Humanos , Corpo Caloso/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
3.
ArXiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205260

RESUMO

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...