Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(7): 306, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878076

RESUMO

In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.


Assuntos
Disbiose , Microbiota , Probióticos , Vagina , Animais , Feminino , Humanos , Antibacterianos/uso terapêutico , Disbiose/microbiologia , Disbiose/terapia , Lactobacillus , Probióticos/administração & dosagem , Vagina/microbiologia
2.
Arch Microbiol ; 206(4): 158, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480540

RESUMO

Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Carbono
3.
PLoS One ; 18(12): e0289989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060499

RESUMO

The present study aims to investigate the antigenic cross reactivity between the receptor from Proteus mirabilis and spermatozoa against a common sperm immobilization factor, SIF, by calorimetric and competitive inhibition studies, and the immunogenicity of this receptor to evoke the formation of antisperm antibodies and their subsequent role in fertility outcome. The sperm binding receptor from Proteus mirabilis (PM-SBR) was extracted from ultrasonicated cell debris by treating it for 12 h at 37°C with 1 M NaCl. After being purified by gel permeation chromatography, its molecular weight as determined by SDS-PAGE was observed to be ≈ 47 kDa. The detrimental impacts of Sperm immobilizing factor (SIF) on spermatozoa viz. motility, viability, and morphology were mitigated when SIF was preincubated with various concentrations of PM-SBR. Using isothermal titration calorimetry, the entropy of the SIF-PM-SBR interaction was found to be -18.31 kJ/mol, whereas the free energy was 28.4 J/mol K. FTIR analysis was used to evaluate the binding interactions between PM-SBR and SIF. In addition, mice that were administered antibodies against PM-SBR were unable to conceive, in contrast to mice that were administered Phosphate buffer saline (PBS) or pre-immunization serum as controls. In light of this, we may conclude that anti-PM-SBR antibodies act as anti-sperm antibodies. Our work found that molecular mimicry between Proteus mirabilis and spermatozoa may cause antisperm immune reactivity. As a result of an immunological response to PM-SBR, infected individuals may produce antibodies against an epitope similar to one found on spermatozoa which helps in developing new strategies for managing autoimmune responses and infertility.


Assuntos
Infertilidade , Proteus mirabilis , Masculino , Animais , Camundongos , Sêmen/química , Espermatozoides/fisiologia , Motilidade dos Espermatozoides , Anticorpos
4.
Biomark Insights ; 18: 11772719231190218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528936

RESUMO

Due to diagnostic improvements, medical diagnostics is demanding non-invasive or minimally invasive methods. Non-invasively obtained body fluids (eg., Urine, serum) can replace cerebral fluid, amniotic fluid, synovial fluid, bronchoalveolar lavage fluid, and others for diagnostic reasons. Many illnesses are induced by perturbations of cellular signaling pathways and associated pathway networks as a result of genetic abnormalities. These disturbances are represented by a shift in the protein composition of the fluids surrounding the tissues and organs that is, tissue interstitial fluid (TIF). These variant proteins may serve as diagnostic "signatures" for a variety of disorders. This review provides a concise summary of urine and serum biomarkers that may be used for the diagnosis and prognosis of a variety of disorders, including cancer, brain diseases, kidney diseases, and other system diseases. The studies reviewed in this article suggest that serum and urine biomarkers of various illnesses may be therapeutically useful for future diagnostics. Correct illness management is crucial for disease prognosis, hence non-invasive serum and urine biomarkers have been extensively studied for diagnosis, subclassification, monitoring disease activity, and predicting treatment results and consequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...