Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 2021: 9892647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957414

RESUMO

Multispectral observations from unmanned aerial vehicles (UAVs) are currently used for precision agriculture and crop phenotyping applications to monitor a series of traits allowing the characterization of the vegetation status. However, the limited autonomy of UAVs makes the completion of flights difficult when sampling large areas. Increasing the throughput of data acquisition while not degrading the ground sample distance (GSD) is, therefore, a critical issue to be solved. We propose here a new image acquisition configuration based on the combination of two focal length (f) optics: an optics with f = 4.2 mm is added to the standard f = 8 mm (SS: single swath) of the multispectral camera (DS: double swath, double of the standard one). Two flights were completed consecutively in 2018 over a maize field using the AIRPHEN multispectral camera at 52 m altitude. The DS flight plan was designed to get 80% overlap with the 4.2 mm optics, while the SS one was designed to get 80% overlap with the 8 mm optics. As a result, the time required to cover the same area is halved for the DS as compared to the SS. The georeferencing accuracy was improved for the DS configuration, particularly for the Z dimension due to the larger view angles available with the small focal length optics. Application to plant height estimates demonstrates that the DS configuration provides similar results as the SS one. However, for both the DS and SS configurations, degrading the quality level used to generate the 3D point cloud significantly decreases the plant height estimates.

2.
Opt Express ; 27(8): A319-A338, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052885

RESUMO

The estimation of the bathymetry and the detection of targets located on the seabed of shallow waters using remote sensing techniques is of great interest for many environmental applications in coastal areas such as benthic habitat mapping, monitoring of seabed aquatic plants and the subsequent management of littoral zones. For that purpose, knowledge of the optical effects induced by the neighborhood of a given seabed target and by the water column itself is required to better interpret the subsurface upward radiance measured by satellite or shipborne radiometers. In this paper, the various sources of photons that contribute to the subsurface upward radiance are analyzed. In particular, the adjacency effects caused by the neighborhood of a given seabed target are quantified for three water turbidity conditions, namely clear, moderately turbid and turbid waters. Firstly, an analytical expression of the subsurface radiance is proposed in order to make explicit the radiance terms corresponding to these effects. Secondly, a sensitivity study is performed using radiative transfer modeling to determine the influence of the seabed adjacency effects on the upward signal with respect to various parameters such as the bathymetry or the bottom brightness. The results show that the highest contributions of the adjacency effects induced by the neighborhood of a seabed target to the subsurface radiance could reach 26%, 18% and 9% for clear, moderately turbid and turbid water conditions respectively. Therefore, the detection of a seabed target could be significantly biased if the seabed adjacency effects are ignored in the analysis of remote sensing measurements. Our results could be further used to improve the performance of inverse algorithms dedicated to the retrieval of bottom composition, water optical properties and/or bathymetry.

3.
Sci Rep ; 8(1): 15933, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374139

RESUMO

The detection of plant diseases, including fungi, is a major challenge for reducing yield gaps of crops across the world. We explored the potential of the PROCOSINE radiative transfer model to assess the effect of the fungus Pseudocercospora fijiensis on leaf tissues using laboratory-acquired submillimetre-scale hyperspectral images in the visible and near-infrared spectral range. The objectives were (i) to assess the dynamics of leaf biochemical and biophysical parameters estimated using PROCOSINE inversion as a function of the disease stages, and (ii) to discriminate the disease stages by using a Linear Discriminant Analysis model built from the inversion results. The inversion results show that most of the parameter dynamics are consistent with expectations: for example, the chlorophyll content progressively decreased as the disease spreads, and the brown pigments content increased. An overall accuracy of 78.7% was obtained for the discrimination of the six disease stages, with errors mainly occurring between asymptomatic samples and first visible disease stages. PROCOSINE inversion provides relevant ecophysiological information to better understand how P. fijiensis affects the leaf at each disease stage. More particularly, the results suggest that monitoring anthocyanins may be critical for the early detection of this disease.


Assuntos
Ascomicetos/fisiologia , Análise Discriminante , Doenças das Plantas/microbiologia , Plantas/metabolismo , Clorofila/análise , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas/microbiologia
4.
Opt Express ; 26(2): A1-A18, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402051

RESUMO

We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...