Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(12): 407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987026

RESUMO

The aim of the present study is to investigate the ameliorative potential of the aqueous extract of Indigofera tinctoria (IT) in aging-induced inflammation and its associated cardiac hypertrophy and fibrosis. Young (3-month-old) and aged (24-26-month-old) male Wistar albino rats were grouped into young control, aged control, aged + IT, and young + IT. The animals in the supplementary groups received 200 mg/kg BWT of aqueous extract of IT orally once a day for 21 days. Aged animals showed prolonged QT interval and increased weight and volume of the heart with a thickening ventricular wall. Infiltration of leukocytes and increased cardiomyocyte diameter and decreased numerical density along with cardiomyocyte apoptosis and increased collagen accumulation were also seen in aged myocardium when compared to the young. The expression profile of various pro-inflammatory cytokines such as IL-6, IL-1ß, TNF-α, NFκB, and iNOS was increased with a concomitant reduction in IL-10 expression in the aged compared to the young. In addition, a marked increase in ROS generation, TGF-ß, and α-SMA levels is evident in the aged myocardium. These pathological changes were greatly reversed in aged animals supplemented with IT. Furthermore, the aged + IT group showed repression of pro-inflammatory markers with a subsequent increase in IL-10 expression. Contrarily, no marked changes were observed between young and young + IT groups. Taken together, it is concluded that the aqueous extract of Indigofera tinctoria suppresses cardiac fibrosis and hypertrophy by repressing the inflammation and its associated activation of TGFß and myofibroblast conversion.

2.
Cell Biol Int ; 46(12): 2173-2184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069519

RESUMO

The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/farmacologia , Coração , Miócitos Cardíacos/metabolismo , Hiperglicemia/metabolismo , Glucose/metabolismo , Expressão Gênica , Embrião não Mamífero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...