Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(26): 12345-12367, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38874335

RESUMO

Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.

2.
ACS Appl Mater Interfaces ; 16(26): 33620-33632, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888466

RESUMO

Amorphous molybdenum sulfide (a-MoSx) is a promising candidate to replace noble metals as electrocatalysts for the hydrogen evolution reaction (HER) in electrochemical water splitting. So far, understanding of the activity of a-MoSx in relation to its physical (e.g., porosity) and chemical (e.g., Mo/S bonding environments) properties has mostly been derived from bulk electrochemical measurements, which provide limited information about electrode materials that possess microscopic structural heterogeneities. To overcome this limitation, herein, scanning electrochemical cell microscopy (SECCM) has been deployed to characterize the microscopic electrochemical activity of a-MoSx thin films (ca. 200 nm thickness), which possess a significant three-dimensional structure (i.e., intrinsic porosity) when produced by electrodeposition. A novel two-step SECCM protocol is designed to quantitatively determine spatially resolved electrochemical activity and electrochemical surface area (ECSA) within a single, high-throughput measurement. It is shown for the first time that although the highest surface area (e.g., most porous) regions of the a-MoSx film possess the highest total activity (measured by the electrochemical current), they do not possess the highest specific activity (measured by the ECSA-normalized current density). Instead, the areas of highest specific activity are localized at/around circular structures, coined "pockmarks", which are tens to hundreds of micrometers in size and ubiquitous to a-MoSx films produced by electrodeposition. By coupling this technique with structural and elemental composition analysis techniques (scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy) and correlating ECSA with activity and specific activity across SECCM scans, this work furthers the understanding of structure-activity relations in a-MoSx and highlights the importance of local measurements for the systematic and rational design of thin film catalyst materials.

3.
Analyst ; 149(9): 2542-2555, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38632960

RESUMO

Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...