Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(4): 1116-1126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282075

RESUMO

Squaraine dyes possess sharp far-red active transition with high extinction coefficient and form aggregates on TiO2 surface. Aggregation of dyes on TiO2 has been considered as a detrimental factor for DSSC device performance, which can be controlled by appending alkyl groups to the dye structures. Hence by integrating alkylated (alkyl groups with both in-plane and out-of-plane) aryl group with indoline moiety to make it compatible with other electrolytes and for controlling the dye-aggregation, a series of squaraine acceptor-based dyes SQA4-6 have been designed and synthesized. SQA4-6 dyes showed absorption between 642 and 653 nm (λmax), photophysical and electrochemical studies indicated that the HOMO energy levels of this sets of dyes are well aligned with the potentials of I-/ I 3 - and [Co(bpy)3]2+/3+ redox shuttles for better dye regeneration process. DSSC device efficiency of 3% has been achieved for SQA5 dye with iodolyte (I-/ I 3 - ) electrolyte in the presence of 0.3 mM of chenodeoxycholic acid (CDCA). The IPCE profile of DSSC device fabricated with SQA4-6 dyes indicated the contribution of aggregated structures for the photocurrent generation.

2.
Org Lett ; 15(17): 4374-7, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23980647

RESUMO

Examples of release of organic acids from encapsulated p-methoxyphenacyl esters provided here demonstrate the value of a phototrigger strategy to release chemicals of interest in water from hydrophobic precursors. In this study, a photochemical ß-cleavage process centered on the p-methoxyphenacyl group is exploited to release the acid of interest from a water-soluble capsule made up of octa acid.

3.
Langmuir ; 28(32): 11920-8, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22809255

RESUMO

In this report, we present methods of functionalization of AuNP's with deep-cavity cavitands that can include organic molecules. Two types of deep-cavity cavitand-functionalized AuNP's have been synthesized and characterized, one soluble in organic solvents and the other in water. Functionalized AuNP soluble in organic solvents forms a 1:1 host-guest complex where the guest is exposed to the exterior solvents. The one soluble in water forms a 2:1 host-guest complex where the guest is protected from solvent water. Phosphorescence from thiones and benzil included within heterocapsules attached to AuNP was quenched by gold atoms present closer to the guests included within deep-cavity cavitands. During this investigation, we have synthesized four new deep-cavity cavitands. Of these, two thiol-functionalized hosts allowed us to make stable AuNP's. However, AuNP's protected with two amine-functionalized cavitands tended to aggregate within a day.

4.
J Org Chem ; 77(5): 2219-24, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300194

RESUMO

Dendritic microenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G3-C(5)G3). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G3 and C(4)G3 dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G3 and C(2)G3 gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G3 < C(4)G3

Assuntos
Compostos Azo/química , Dendrímeros/química , Polímeros/química , Estilbenos/química , Termodinâmica , Estrutura Molecular , Fotoquímica , Estereoisomerismo
5.
Langmuir ; 28(1): 10-6, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22106849

RESUMO

Synthesis and encapsulation properties of two new water-soluble resorcinol-capped organic cavitands (tetra acid and octa acid; RTA and ROA) are reported in this Letter. Organic guest molecules template the formation of capsular assembly of the above cavitands in water. Depending upon the guest, either 1:2 (guest to host) or 2:2 capsular assemblies were formed. The excited state properties of guests such as anthracene, camphorthione, and 4,4'-dimethyl benzil were distinctly different within a capsular assembly from those when they were free in a solution. Importantly, the host-guest complexes of the above two hosts (RTA and ROA) as well as octa acid (OA) could be transferred to a silica surface. The excited state behavior of host-guest assemblies on silica surface resembled that in solution. The high cage effect in the decarbonylation products and high yield of rearrangement product obtained upon photolysis of 1-phenyl-3-tolyl-2-propanone included within RTA, ROA, and OA both in solution and on silica surface supported the conclusion that capsular assemblies of these hosts are stable on silica surface.

6.
Org Lett ; 13(9): 2410-3, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21476519

RESUMO

The self-organization of cucurbit[n]uril (n = 7 and 8, CBs) complexes was probed by electrospray mass spectrometry. The self-association of CB complexes is a general phenomenon but shows some dependence on the absence, presence, and type of included guest molecules.

7.
J Am Chem Soc ; 133(4): 712-5, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21174415

RESUMO

The turn-on of emission in fluorescent protein chromophores sequestered in an "octaacid" capsule is controlled by stereoelectronic effects described by a linear free energy relationship. The stereochemical effects are governed by both the positions and volumes of the aryl substituents, while the electronic effects, including ortho effects, can be treated with Hammett σ parameters. The use of substituent volumes rather than A values reflects packing of the molecule within the confines of the capsule.


Assuntos
Elétrons , Proteínas de Fluorescência Verde/química , Compostos de Benzilideno/química , Cápsulas , Cor , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Espectrometria de Fluorescência , Estereoisomerismo , Termodinâmica
8.
Org Lett ; 12(20): 4544-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20866037

RESUMO

Propyloxy-substituted piperidine in solution adopts a conformation in which its alkoxy group is equatorially positioned. Surprisingly, two conformers of it that do not interconvert in the NMR time scale at room temperature have been found within an octa-acid capsule. The serendipitous finding of the axial conformer of propyloxy-substituted piperidine within a supramolecular capsule highlights the value of confined spaces in physical organic chemistry.

9.
Chem Commun (Camb) ; 46(41): 7736-8, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852795

RESUMO

The use of supramolecular architectures to control the spatially dependent spin exchange (spin communication) between two covalently linked radical centers (biradical) has been explored. Cucurbit[8]uril, through supramolecular steric effect, completely suppresses spin exchange between two adjacent radical centers in a biradical.

10.
J Phys Chem B ; 114(45): 14320-8, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20356085

RESUMO

Thiocarbonyl compounds possess unusual photophysical properties: they fluoresce from S(2), phosphoresce from T(1) only at extremely low concentrations in solution at room temperature, have unit quantum yield of intersystem crossing from S(1) to T(1), undergo self-quenching at diffusion-controlled rates, and are quenched by ground-state oxygen leading to self-destruction. In this article, we are concerned with finding a new method to observe phosphorescence from thioketones at room temperature in aqueous solution at high concentrations. To achieve this goal, one needs to find ways to eliminate diffusion-limited self-quenching and oxygen quenching. We present here a general strategy that has allowed us to record phopshorescence from a number of thioketones in aqueous solution at room temperature. The method involves encapsulation of thioketone molecules within a "closed nanocontainer" made up of two cavitand molecules known by its trivial name as octa acid. In these supramolecular complexes, despite two thiocarbonyl compounds being present in close proximity, no self-quenching occurs within the confined space due to curtailment of their rotational freedom. Although phosphorescence could also be observed when these thioketones are included in open containers, such as cucurbiturils and cyclodextrines, the closed container made up of octa acid is found to be the best medium to observe phosphorescence from thioketones whose excited state chemistry is essentially controlled by self-quenching.

11.
J Am Chem Soc ; 132(5): 1498-9, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20085355

RESUMO

Chromophores related to fluorescent proteins, when sequestered into the "octaacid" capsule, recover their fluorescence. The fluorescence recovery is related to the inhibition of torsional motions within the cavity, implicating the single-bond torsion as an important contributor to internal conversion within this important class of chromophores.


Assuntos
Corantes Fluorescentes/química , Proteínas/química , Compostos de Benzilideno/química , Fluorescência , Imidazóis/química , Modelos Moleculares , Estrutura Molecular
12.
Langmuir ; 26(10): 6943-53, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20055365

RESUMO

With the help of (1)H NMR and EPR techniques, we have probed the dynamics of guest molecules included within a water-soluble deep cavity cavitand known by the trivial name octa acid. All guest molecules investigated here form 2:1 (host/guest) complexes in water, and two host molecules encapsulate the guest molecule by forming a closed capsule. We have probed the dynamics of the guest molecule within this closed container through (1)H NMR and EPR techniques. The timescales offered by these two techniques are quite different, millisecond and nanosecond, respectively. For EPR studies, paramagnetic nitroxide guest molecules and for (1)H NMR studies, a wide variety of structurally diverse neutral organic guest molecules were employed. The guest molecules freely rotate along their x axis (long molecular axis and magnetic axis) on the NMR timescale; however, their rotation is slowed with respect to that in water on the EPR timescale. Rotation along the x axis is dependent on the length of the alkyl chain attached to the nitroxide probe. Overall rotation along the y or z axis was very much dependent on the structure of the guest molecule. The guests investigated could be classified into three groups: (a) those that do not rotate along the y or z axis both at room and elevated (55 degrees C) temperatures, (b) those that rotate freely at room temperature, and (c) those that do not rotate at room temperature but do so at higher temperatures. One should note that rotation here refers to the NMR timescale and it is quite possible that all molecules may rotate at much longer timescales than the one probed here. A slight variation in structure alters the rotational mobility of the guest molecules.


Assuntos
Ácidos Graxos Insaturados/química , Rotação , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Solubilidade , Propriedades de Superfície , Água/química
13.
Langmuir ; 25(6): 3473-81, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19708142

RESUMO

We have been exploring the use of a deep cavity cavitand known by the trivial name 'octa acid' as a photochemical reaction cavity for manipulating photochemical and photophysical properties of organic molecules. In the current study, we have monitored the micropolarity of the interior of the cavitand by recording the fluorescence of five different organic probes. They all indicate that the interior of octa acid capsuleplex (2:1, H/G complex) is nonpolar and does not contain water molecules in spite of the complex being present in water. The nature of the octa acid-probe complex in each case has been characterized by 1H NMR data to be a 2:1 capsuleplex. Photophysical and 1H NMR experiments were employed to probe the factors that control the structure of the complex, 2:2, 2:1, and 1:1. The data we have on hand suggest that the structure of the host/guest complex depends on the size and hydrophobicity of the guest molecule.

14.
Langmuir ; 25(18): 10575-86, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19496576

RESUMO

Factors that govern inclusion of organic molecules within octa acid (OA), a synthetic deep cavity cavitand, have been delineated by examining the complexation behavior of a number of organic molecules with varying dimensions and functionalities with OA. The formation of two types of complexes has been noted: the one which we call cavitandplex is a partially open complex in which a part of the guest molecule remains exposed to water, and the other termed capsuleplex is formed through assembly of two OA molecules. In capsuleplex, the guest is protected from water. Generally, guest molecules that possess ionic head groups form cavitandplex, and all others form capsuleplex. Capsuleplex may contain one or two guest molecules within the capsule. Small organic molecules (<10 A in length) may form both 2:1 and 2:2 capsuleplex, while longer ones (>12 A) preferentially form 2:1 capsuleplex. Extensive 1H NMR experiments have been carried out to characterize host-guest complexes. In the absence of the guest, OA tends to aggregate in water. The extent of aggregation depends on the concentration of OA and the presence of salts in solution. We expect the information obtained from this study to be of great value in predicting the nature of complexes with a given guest and facilitating appropriate guest chosen by researchers.

15.
Langmuir ; 25(24): 13820-32, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20560551

RESUMO

Supramolecular complexation behavior of cucurbiturils with paramagnetic nitroxide spin probes was examined by (1)H NMR, X-ray diffraction studies of crystals, computation, and EPR. Both cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) form a 1:1 complex with 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethylpiperidinyl-N-oxy bromide (CAT1). The structure of the complex in the solid state was inferred by X-ray diffraction studies and in the gas phase by computation (B3LYP/6-31G(d)). Whereas ESI-MS data provided evidence for the existence of the complex in solution, indirect evidence was obtained through (1)H NMR studies with a structural diamagnetic analogue, 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethyl-N-methylpiperidine iodide (DCAT1). The EPR spectrum of the CAT1@CB7 complex consisting of three lines suggested that probe CAT1 is associated with host CB7 such that the nitroxide part is exposed to water. The spectral pattern was independent of the concentration of the complex and the presence of salt such as NaCl. The most interesting observation was made with CB8 as the host. In this case, in addition to the expected three-line spectrum, an additional spectrum consisting of seven lines was recorded. The contribution of the seven-line spectrum to the total spectrum was dependent on the concentration of the complex and added salt (NaCl) to the aqueous solution. The coupling constant for the seven-line spectrum for (14)N-substituted CAT1 is 5 G, and that for the four-line spectrum for (15)N-substituted CAT1 is 7.15 G. The only manner by which we could reproduce the observed spectra by simulation for both (14)N- and (15)N-substituted CAT1@CB8 was by assuming a spin exchange among three nitroxide radicals. To account for this observation, we hypothesize that three CAT1 molecules included within CB8 interact in such a way that there is an association of three supramolecules of CAT1@CB8 (i.e., [CAT1@CB8](3)) in a triangular geometry that leads to spin exchange between the three radical centers. We have established, with the help of 13 additional examples, that this is a general phenomenon. We are in the process of understanding this unusual phenomenon.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imidazóis/química , Substâncias Macromoleculares/química , Óxidos de Nitrogênio/química , Piperidinas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Raios X
16.
J Am Chem Soc ; 130(23): 7206-7, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18473461

RESUMO

A 15N-labeled nitroxide was incarcerated into an octa acid nanocapsule, which was confirmed by 1H NMR and EPR spectroscopy. Electron paramagnetic interaction between the 15N-labeled incarcerated nitroxide and a 14N-labeled free nitroxide in the external aqueous solution was observed by EPR spectroscopy. The observation of spin-spin interaction, through the walls of the cancer and is reflected in the simultaneous line-broadening of both the 15N-labeled and 14N-labeled nitroxides. The computer-assisted analysis of the EPR data further provides direct information on the motion and the polarity of both the incarcerated paramagnetic nitroxide and the nitroxides in the external bulk aqueous phase. We also show how communication between an incarcerated guest and molecules in the bulk solvent can be enhanced or inhibited by supramolecular factors such as Coulombic attraction or repulsion between a charged guest@host complex (incarcerated 15N nitroxide) and charged molecules in the aqueous phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA