Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(11): 3199-204, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25739963

RESUMO

Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

2.
Chem Commun (Camb) ; 48(55): 6915-7, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22674060

RESUMO

We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 030201, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060319

RESUMO

Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.

4.
J Chem Phys ; 133(12): 124504, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20886947

RESUMO

We present an adaptable method to compute the solubility limit of solids by molecular simulation, which avoids the difficulty of reference state calculations. In this way, the method is highly adaptable to molecules of complex topology. Results are shown for solubility calculations of sodium chloride in water and light alcohols at atmospheric conditions. The pseudosupercritical path integration method is used to calculate the free energy of the solid and gives results that are in good agreement with previous studies that reference the Einstein crystal. For the solution phase calculations, the self-adaptive Wang-Landau transition-matrix Monte Carlo method is used within the context of an expanded isothermal-isobaric ensemble. The method shows rapid convergence properties and the uncertainty in the calculated chemical potential was 1% or less for all cases. The present study underpredicts the solubility limit of sodium chloride in water, suggesting a shortcoming of the molecular models. Importantly, the proper trend for the chemical potential in various solvents was captured, suggesting that relative solubilities can be computed by the method.

5.
J Chem Phys ; 127(21): 214504, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18067361

RESUMO

The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point calculations is an extension of the so-called pseudo-supercritical path sampling procedure. This study demonstrates that the method can be effectively applied to quite complex systems such as ionic liquids and that the appropriate choice of tethering potentials for a key step in the thermodynamic path can enable first order phase transitions to be avoided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...