Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 3(1): 58-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376134

RESUMO

The ability to perform laboratory testing near the patient and with smaller blood volumes would benefit patients and physicians alike. We describe our design of a miniaturized clinical laboratory system with three components: a hardware platform (ie, the miniLab) that performs preanalytical and analytical processing steps using miniaturized sample manipulation and detection modules, an assay-configurable cartridge that provides consumable materials and assay reagents, and a server that communicates bidirectionally with the miniLab to manage assay-specific protocols and analyze, store, and report results (i.e., the virtual analyzer). The miniLab can detect analytes in blood using multiple methods, including molecular diagnostics, immunoassays, clinical chemistry, and hematology. Analytical performance results show that our qualitative Zika virus assay has a limit of detection of 55 genomic copies/ml. For our anti-herpes simplex virus type 2 immunoglobulin G, lipid panel, and lymphocyte subset panel assays, the miniLab has low imprecision, and method comparison results agree well with those from the United States Food and Drug Administration-cleared devices. With its small footprint and versatility, the miniLab has the potential to provide testing of a range of analytes in decentralized locations.

2.
Bioinformatics ; 26(17): 2109-15, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20624780

RESUMO

MOTIVATION: Evolutionarily conserved non-coding genomic sequences represent a potentially rich source for the discovery of gene regulatory region such as transcriptional enhancers. However, detecting orthologous enhancers using alignment-based methods in higher eukaryotic genomes is particularly challenging, as regulatory regions can undergo considerable sequence changes while maintaining their functionality. RESULTS: We have developed an alignment-free method which identifies conserved enhancers in multiple diverged species. Our method is based on similarity metrics between two sequences based on the co-occurrence of sequence patterns regardless of their order and orientation, thus tolerating sequence changes observed in non-coding evolution. We show that our method is highly successful in detecting orthologous enhancers in distantly related species without requiring additional information such as knowledge about transcription factors involved, or predicted binding sites. By estimating the significance of similarity scores, we are able to discriminate experimentally validated functional enhancers from seemingly equally conserved candidates without function. We demonstrate the effectiveness of this approach on a wide range of enhancers in Drosophila, and also present encouraging results to detect conserved functional regions across large evolutionary distances. Our work provides encouraging steps on the way to ab initio unbiased enhancer prediction to complement ongoing experimental efforts. AVAILABILITY: The software, data and the results used in this article are available at http://www.genome.duke.edu/labs/ohler/research/transcription/fly_enhancer/.


Assuntos
Drosophila/genética , Elementos Facilitadores Genéticos , Genoma de Inseto , Análise de Sequência de DNA/métodos , Animais , Evolução Molecular , Filogenia , Alinhamento de Sequência , Software
3.
Genome Biol ; 11(2): R19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20156354

RESUMO

cERMIT is a computationally efficient motif discovery tool based on analyzing genome-wide quantitative regulatory evidence. Instead of pre-selecting promising candidate sequences, it utilizes information across all sequence regions to search for high-scoring motifs. We apply cERMIT on a range of direct binding and overexpression datasets; it substantially outperforms state-of-the-art approaches on curated ChIP-chip datasets, and easily scales to current mammalian ChIP-seq experiments with data on thousands of non-coding regions.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA/métodos , Animais , Biologia Computacional , DNA Fúngico/genética , Genoma Humano , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...