Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 799142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251078

RESUMO

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases of canola (Brassica napus) in Canada. The identification of novel genes that contribute to clubroot resistance is important for the sustainable management of clubroot, as these genes may be used in the development of resistant canola cultivars. Phospholipase As (PLAs) play important roles in plant defense signaling and stress tolerance, and thus are attractive targets for crop breeding. However, since canola is an allopolyploid and has multiple copies of each PLA gene, it is time-consuming to test the functions of PLAs directly in this crop. In contrast, the model plant Arabidopsis thaliana has a simpler genetic background and only one copy of each PLA. Therefore, it would be reasonable and faster to validate the potential utility of PLA genes in Arabidopsis first. In this study, we identified seven homozygous atpla knockout/knockdown mutants of Arabidopsis, and tested their performance following inoculation with P. brassicae. Four mutants (pla1-iiα, pla1-iγ3, pla1-iii, ppla-iiiß, ppla-iiiδ) developed more severe clubroot than the wild-type, suggesting increased susceptibility to P. brassicae. The homologs of these Arabidopsis PLAs (AtPLAs) in B. napus (BnPLAs) were identified through Blast searches and phylogenic analysis. Expression of the BnPLAs was subsequently examined in transcriptomic datasets generated from canola infected by P. brassicae, and promising candidates for further characterization identified.

2.
Plant Cell Rep ; 40(9): 1647-1663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34215912

RESUMO

KEY MESSAGE: AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Ácidos Graxos/biossíntese , Sementes/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
3.
Lipids ; 55(5): 495-512, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32856292

RESUMO

A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops. As such, genome editing using CRISPR/Cas is emerging as a breakthrough breeding tool that could provide a platform to keep pace with escalating demand while potentially minimizing regulatory burden. In this review, we discuss the technology itself and progress that has been made thus far with respect to its use in oilseed crops to improve seed oil content and quality. Furthermore, we examine a number of genes that may provide ideal targets for genome editing in this context, as well as new CRISPR-related tools that have the potential to be applied to oilseed plants and may allow additional gains to be made in the future.


Assuntos
Lipídeos/genética , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Triglicerídeos/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Humanos , Melhoramento Vegetal , Óleos de Plantas/química , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Sementes/metabolismo , Triglicerídeos/metabolismo
4.
Plant Cell Rep ; 39(7): 953-969, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314045

RESUMO

KEY MESSAGE: Seed-specific down-regulation of AtCESA1 and AtCESA9, which encode cellulose synthase subunits, differentially affects seed storage compound accumulation in Arabidopsis. High amounts of cellulose can negatively affect crop seed quality, and, therefore, diverting carbon partitioning from cellulose to oil, protein and/or starch via molecular breeding may improve seed quality. To determine the effect of seed cellulose content reduction on levels of storage compounds, Arabidopsis thaliana CELLULOSE SYNTHASE1 (AtCESA1) and AtCESA9 genes, which both encode cellulose synthase subunits, were individually down-regulated using seed-specific intron-spliced hairpin RNA (hpRNAi) constructs. The selected seed-specific AtCESA1 and AtCESA9 Arabidopsis RNAi lines displayed reduced cellulose contents in seeds, and exhibited no obvious visual phenotypic growth defects with the exception of a minor effect on early root development in AtCESA1 RNAi seedlings and early hypocotyl elongation in the dark in both types of RNAi line. The seed-specific down-regulation of AtCESA9 resulted in a reduction in seed weight compared to empty vector controls, which was not observed in AtCESA1 RNAi lines. In terms of effects on carbon partitioning, AtCESA1 and AtCESA9 RNAi lines exhibited distinct effects. The down-regulation of AtCESA1 led to a ~ 3% relative increase in seed protein content (P = 0.04) and a ~ 3% relative decrease in oil content (P = 0.02), but caused no alteration in soluble glucose levels. On the contrary, AtCESA9 RNAi lines did not display a significant reduction in seed oil, protein or soluble glucose content. Taken together, our results indicate that the seed-specific down-regulation of AtCESA1 causes alterations in seed storage compound accumulation, while the effect of AtCESA9 on carbon partitioning is absent or minor in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carbono/metabolismo , Celulose/metabolismo , Regulação para Baixo , Glucosiltransferases/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucosiltransferases/genética , Homozigoto , Hipocótilo/anatomia & histologia , Especificidade de Órgãos , Fenótipo , Óleos de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/enzimologia , Solubilidade , Amido/metabolismo
5.
Plant J ; 102(4): 856-871, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31991039

RESUMO

Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.


Assuntos
Clorófitas/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Microalgas/enzimologia , Triglicerídeos/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocombustíveis , Clorófitas/genética , Diacilglicerol O-Aciltransferase/genética , Inibidor da Ligação a Diazepam/genética , Cinética , Microalgas/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Nicotiana/enzimologia , Nicotiana/genética
6.
J Biol Chem ; 294(41): 14838-14844, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481466

RESUMO

Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ9cis,12cis,15cis ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore, exploring the mechanisms that route PC-derived PUFA to TAG is essential for understanding and improving PUFA production. The seed oil of flax (Linum usitatissimum) is enriched in ALA, and this plant has many lipid biosynthetic enzymes that prefer ALA-containing substrates. In this study, using membrane yeast two-hybrid and bimolecular fluorescence complementation assays, we probed recombinant flax transferase enzymes, previously shown to contribute to PUFA enrichment of TAG, for physical interactions with each other under in vivo conditions. We found that diacylglycerol acyltransferases, which catalyze the final reaction in acyl-CoA-dependent TAG biosynthesis, interact with the acyl-editing enzymes phosphatidylcholine: diacylglycerol cholinephosphotransferase, and lysophosphatidylcholine acyltransferase. Physical interactions among the acyl-editing enzymes were also identified. These findings reveal the presence of an assembly of interacting transferases that may facilitate the channeling of PUFA from PC to TAG in flax and possibly also in other oleaginous plants that produce seeds enriched in PC-modified fatty acids.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Linho/enzimologia , Fosfatidilcolinas/química , Ligação Proteica , Triglicerídeos/química , Ácido alfa-Linolênico/metabolismo
7.
J Biol Chem ; 294(43): 15862-15874, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439667

RESUMO

De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Arabidopsis/química , Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Sequência Conservada , Evolução Molecular , Cinética , Modelos Biológicos , Fosforilação , Fosforilcolina/metabolismo , Fosfosserina/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Ratos , Homologia Estrutural de Proteína , Nicotiana/genética
8.
Lipids ; 53(5): 469-480, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29989678

RESUMO

Acyl-lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to make food, renewable biomaterials, and fuels. As such, enormous efforts have been made to uncover the specific roles of different genes and enzymes involved in lipid biosynthetic pathways over the last few decades. sn-Glycerol-3-phosphate acyltransferases (GPAT) are a group of important enzymes catalyzing the acylation of sn-glycerol-3-phosphate at the sn-1 or sn-2 position to produce lysophosphatidic acids. This reaction constitutes the first step of storage-lipid assembly and is also important in polar- and extracellular-lipid biosynthesis. Ten GPAT have been identified in Arabidopsis, and many homologs have also been reported in other plant species. These enzymes differentially localize to plastids, mitochondria, and the endoplasmic reticulum, where they have different biological functions, resulting in distinct metabolic fate(s) for lysophosphatidic acid. Although studies in recent years have led to new discoveries about plant GPAT, many gaps still exist in our understanding of this group of enzymes. In this article, we highlight current biochemical and molecular knowledge regarding plant GPAT, and also discuss deficiencies in our understanding of their functions in the context of plant acyl-lipid biosynthesis.


Assuntos
Arabidopsis/enzimologia , Biocatálise , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipídeos/biossíntese
9.
J Exp Bot ; 67(15): 4627-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325892

RESUMO

GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT) genes encode enzymes involved in glycerolipid biosynthesis in plants. Ten GPAT homologues have been identified in Arabidopsis. GPATs 4-8 have been shown to be involved in the production of extracellular lipid barrier polyesters. Recently, GPAT9 was reported to be essential for triacylglycerol (TAG) biosynthesis in developing Arabidopsis seeds. The enzymatic properties and possible functions of GPAT9 in surface lipid, polar lipid and TAG biosynthesis in non-seed organs, however, have not been investigated. Here we show that Arabidopsis GPAT9 exhibits sn-1 acyltransferase activity with high specificity for acyl-coenzyme A, thus providing further evidence that this GPAT is involved in storage lipid biosynthesis. We also confirm a role for GPAT9 in seed oil biosynthesis and further demonstrate that GPAT9 contributes to the biosynthesis of both polar lipids and TAG in developing leaves, as well as lipid droplet production in developing pollen grains. Conversely, alteration of constitutive GPAT9 expression had no obvious effects on surface lipid biosynthesis. Taken together, these studies expand our understanding of GPAT9 function to include modulation of several different intracellular glycerolipid pools in plant cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/fisiologia , Glicolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Metabolismo dos Lipídeos/fisiologia , Microscopia Eletrônica de Transmissão , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...