Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 200: 579-598, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574567

RESUMO

Organic compounds in the atmosphere vary widely in their molecular composition and chemical properties, so no single instrument can reasonably measure the entire range of ambient compounds. Over the past decade, a new generation of in situ, field-deployable mass spectrometers has dramatically improved our ability to detect, identify, and quantify these organic compounds, but no systematic approach has been developed to assess the extent to which currently available tools capture the entire space of chemical identity and properties that is expected in the atmosphere. Reduced-parameter frameworks that have been developed to describe atmospheric mixtures are exploited here to characterize the range of chemical properties accessed by a suite of instruments. Multiple chemical spaces (e.g. oxidation state of carbon vs. volatility, and oxygen number vs. carbon number) were populated with ions measured by several mass spectrometers, with gas- and particle-phase α-pinene oxidation products serving as the test mixture of organic compounds. Few gaps are observed in the coverage of the parameter spaces by the instruments employed in this work, though the full extent to which comprehensive measurement was achieved is difficult to assess due to uncertainty in the composition of the mixture. Overlaps between individual ions and regions in parameter space were identified, both between gas- and particle-phase measurements, and within each phase. These overlaps were conservatively found to account for little (<10%) of the measured mass. However, challenges in identifying overlaps and in accurately converting molecular formulas into chemical properties (such as volatility or reactivity) highlight a continued need to incorporate structural information into atmospheric measurements.

2.
Atmos Chem Phys ; 10(2): 5599-5626, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22427751

RESUMO

Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200-400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6-1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) [Formula: see text], [Formula: see text], and organic compounds; volatile organic compounds (VOCs); and CO(2), NO, NO(2), and O(3). We observed rapid changes in pollutant gradients due to variations in highway traffic flow rate, wind speed, and surface boundary layer height. Before sunrise and peak traffic flow rates, downwind concentrations of particles, CO(2), NO, and NO(2) were highest within 100-250 m of the highway. After sunrise pollutant levels declined sharply (e.g., PNC and NO were more than halved) and the gradients became less pronounced as wind speed increased and the surface boundary layer rose allowing mixing with cleaner air aloft. The levels of aromatic VOCs and [Formula: see text], [Formula: see text] and organic aerosols were generally low throughout the morning, and their spatial and temporal variations were less pronounced compared to PNC and NO. O(3) levels increased throughout the morning due to mixing with O(3)-enriched air aloft and were generally lowest near the highway reflecting reaction with NO. There was little if any evolution in the size distribution of 6-225 nm particles with distance from the highway. These results suggest that to improve the accuracy of exposure estimates to near-highway pollutants, short-term (e.g., hourly) temporal variations in pollutant gradients must be measured to reflect changes in traffic patterns and local meteorology.

3.
Mass Spectrom Rev ; 26(2): 185-222, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17230437

RESUMO

The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described.

4.
J Phys Chem A ; 109(48): 10910-9, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16331935

RESUMO

The ozonolysis of mixed oleic-acid/stearic-acid (OL/SA) aerosol particles from 0/100 to 100/0 wt % composition is studied. The magnitude of the divergence of the particle beam inside an aerosol mass spectrometer shows that, in the concentration range 100/0 to 60/40, the mixed OL/SA particles are liquid prior to reaction. Upon ozonolysis, particles having compositions of 75/25 and 60/40 change shape, indicating that they have solidified during reaction. Transmission electron micrographs show that SA(s) forms needles. For particles having compositions of 75/25, 60/40, and greater SA content, the reaction kinetics exhibit an initial fast decay of OL for low O(3) exposure with no further loss of OL at higher O(3) exposures. For compositions from 50/50 to 10/90, the residual OL concentration remains at 28 +/- 2% of its initial value. The initial reactive uptake coefficient for O(3), as determined by OL loss, decreases linearly from 1.25 (+/-0.2) x 10(-3) to 0.60 (+/-0.15) x 10(-3) for composition changes of 100/0 to 60/40. At 50/50 composition, the uptake coefficient drops abruptly to 0.15 (+/-0.1) x 10(-3), and there are no further changes with increased SA content. These observations can be explained with a combination of three postulates: (1) Unreacted mixed particles remain as supersaturated liquids up to 60/40 composition, and the OL in this form rapidly reacts with O(3). (2) SA, as it solidifies, locks into its crystal structure a significant amount of OL, and this OL is completely inaccessible to O(3). (3) Accompanying crystallization, some stearic acid molecules connect as a filamentous network to form a semipermeable gel containing liquid OL but with a reduced uptake coefficient because of the decrease in molecular diffusivity in the gel. An individual particle of 50/50 to 90/10 is hypothesized as a combination of SA crystals having OL impurities (postulate 2) that are partially enveloped by an SA/OL gel (postulate 3) to explain (a) the abrupt drop in the uptake coefficient from 60/40 to 50/50 and (b) the residual OL content even after high ozone exposure. The results of this study, pointing out the important effects of particle phase, composition, and morphology on chemical reactivity, contribute to an improved understanding of the aging processes of atmospheric aerosol particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...