Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 14(1): 209, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315297

RESUMO

A rational regulation of the solar water splitting reaction pathway by adjusting the surface composition and phase structure of catalysts is a substantial approach to ameliorate the sluggish reaction kinetics and improve the energy conversion efficiency. In this study, we demonstrate a nanocrystalline iron pyrophosphate (Fe4(P2O7)3, FePy)-regulated hybrid overlayer with amorphous iron phosphate (FePO4, FePi) on the surface of metal oxide nanostructure with boosted photoelectrochemical (PEC) water oxidation. By manipulating the facile electrochemical surface treatment followed by the phosphating process, nanocrystalline FePy is localized in the FePi amorphous overlayer to form a heterogeneous hybrid structure. The FePy-regulated hybrid overlayer (FePy@FePi) results in significantly enhanced PEC performance with long-term durability. Compared with the homogeneous FePi amorphous overlayer, FePy@FePi can improve the charge transfer efficiency more significantly, from 60% of FePi to 79% of FePy@FePi. Our density-functional theory calculations reveal that the coexistence of FePi and FePy phases on the surface of metal oxide results in much better oxygen evolution reaction kinetics, where the FePi was found to have a typical down-hill reaction for the conversion from OH* to O2, while FePy has a low free energy for the formation of OH*.

2.
ACS Appl Mater Interfaces ; 13(31): 37035-37043, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313433

RESUMO

Developing highly active catalysts for hydrogen evolution reaction based on earth-abundant materials is challenging. Nitrogen doping has recently been reported to improve catalytic properties by modifying the electrochemical properties of titanium carbide MXene. However, systematic doping engineering, such as optimization of doping concentration, doping site, and thermodynamic phase stabilization have not been systematically controlled, which retards the reliable production of high-activity MXene catalysts. In this study, the optimum doping concentration of nitrogen and doping process conditions on O-functionalized Ti2C MXene for hydrogen evolution reaction were investigated using density functional theory with thermodynamics. To confirm the optimum nitrogen concentration, the catalytic properties are examined considering the Gibbs free energy of hydrogen adsorption and conductivity for 2.2-11.0 at % nitrogen concentration. It was confirmed that 8.8 at % nitrogen-doped Ti2CO2 had optimum catalytic properties under standard conditions. Moreover, when the doping concentration was higher, the decrease in the adsorption energies of hydrogen and the transition in the energy dispersion of the conduction band led to deterioration of the catalytic properties. Through theoretical results, the feasible process conditions for optimum nitrogen concentration while maintaining the structure of MXene are presented using a thermodynamics model taking into account chemical reactions with various nitrogen sources. This study provides further understanding of the nitrogen-doping mechanism of Ti2CO2 for hydrogen evolution reactions.

3.
Angew Chem Int Ed Engl ; 60(36): 19740-19743, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121302

RESUMO

Borosulfates are classified as silicate analogue materials. The number of crystallographically characterized compounds is still limited, whereas the structural diversity is already impressive. The anionic substructures of borosulfates exhibit vertex-connected (BO4 )- and (SO4 )-tetrahedra, whereas bridging between two (SO4 )- or even between two (BO4 )-tetrahedra is scarce. The herein presented compound Sr[B3 O(SO4 )4 (SO4 H)] is the first borosulfate with a triple-vertex linkage of three (BO4 ) tetrahedra via one common oxygen atom. DFT calculations complement the experimental studies. Bader charges (calculated for all atoms) as well as charge-density calculations give hint to the electron distribution within the anionic substructure and density-of-states calculations support the interpretation of the bonding situation.

4.
Nanomicro Lett ; 13(1): 60, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34138279

RESUMO

As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen-carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min-1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms. In a practical Zn-air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g-1) and power density (101.62 mW cm-2), exceeding those of Pt/C-Ru/C (700.8 mAh g-1 and 89.16 mW cm-2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...