Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 212: 39-45, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427940

RESUMO

Health of millions of people is threatened by the risk of drinking arsenic-contaminated water worldwide. Arsenic naturally conflicts with the concept of life, but recent studies showed that some microorganisms use toxic minerals as the source of energy. Hence, the researchers should consider the development of cost-effective and highly productive procedures to remove arsenic. The current study was conducted on a native bacterial population of Seyed-Jalaleddin Spring Kurdistan, Iran. Accordingly, the arsenic amount in water samples was measured >500 µg/L by the two field and in vitro methods. Water samples were transferred to laboratory and cultured on chemically defined medium (CDM) with arsenic salts. A total of 14 native arsenic-resistant bacterial strains were isolated and after providing pure culture and performing biochemical tests, the isolates were identified using polymerase chain reaction (PCR) and 16s rRNA genomic sequencing. The potential of bacterial strains for the biotransformation of arsenic was assessed by the qualitative assessment of AgNO3 method and efficiency of arsenic speciation was determined for the first time by silver diethyldithiocarbamate (SDDC) method with an error of less than 5%. Among the isolated strains, only strain As-11 and strain As-12 showed arsenic transformation characteristics and were registered in NCBI database by the access numbers KY119262 and KY119261, respectively. Results of the current study indicated that strain As-11 had the potential of biotransformation of As(V) to As(III) and vice versa with the efficiency of 78% and 48%, respectively. On the other hand, strain As-12 had the potential for biotransformation of As(V) to As(III) and vice versa with the efficiency of 28% and 45%, respectively.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Arsênio/isolamento & purificação , Bactérias , Irã (Geográfico) , RNA Ribossômico 16S , Microbiologia da Água , Poluentes Químicos da Água/isolamento & purificação , Recursos Hídricos
2.
Ecotoxicol Environ Saf ; 140: 170-176, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28259061

RESUMO

Arsenic is a known human carcinogen. Arsenite [As(III), H3AsO3] and arsenate [As(V), H2AsO4- and HAsO42-] are the two predominant compounds of As found in surface water and groundwater. The aim of this study was to explore a bioremediation strategy for biotransformation of arsenite to arsenate by microorganisms. In this study, Babagorgor Spring, located west of Iran, was selected as the arsenic-contaminated source and its physicochemical characteristics and in situ microbiological composition were analyzed. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) analysis indicated that the arsenic level was 614µg/l. Fourteen arsenic tolerant indigenous bacteria were isolated from arsenic-contaminated water using chemically defined medium (CDM), supplemented with 260-3900mg/l arsenite and 1560-21800mg/l arsenate. Among the isolates, a strain As-11 exhibited high ability of arsenic transformation. Biochemical tests were used for bacterial identification and confirmation was conducted by 16S rRNA sequence analysis. Results confirmed that As-11 was related to the genus Pseudomonas. This bacterium showed maximum tolerable concentration to arsenite up to 3250mg/l and arsenate up to 20280mg/l. Under heterotrophic conditions, the bacterium exhibited 48% of As(III) and 78% of As(V) transformation from the medium amended with 130 and 312mg/l of sodium arsenite and sodium arsenate, respectively. Moreover, under chemolithotrophic conditions, bacterium was able to transform 41% of 130mg/l of As(III) from the medium amended with nitrate as the terminal electron acceptor. Pseudomonas strain As-11 was reported as an arsenic transformer, for the first time.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Pseudomonas/metabolismo , Recursos Hídricos , Adaptação Fisiológica/fisiologia , Arsênio/metabolismo , Biodegradação Ambiental , Biotransformação , Água Subterrânea/microbiologia , Irã (Geográfico) , Pseudomonas/genética , RNA Ribossômico 16S/genética , Compostos de Sódio/metabolismo , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...