Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Metab ; 1(11): 1157-1167, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31742248

RESUMO

Catecholamines stimulate the first step of lipolysis by PKA-dependent release of the lipid droplet-associated protein ABHD5 from perilipin to co-activate the lipase ATGL. Here, we unmask a yet unrecognized proteolytic and cardioprotective function of ABHD5. ABHD5 acts in vivo and in vitro as a serine protease cleaving HDAC4. Through the production of an N-terminal polypeptide of HDAC4 (HDAC4-NT), ABHD5 inhibits MEF2-dependent gene expression and thereby controls glucose handling. ABHD5-deficiency leads to neutral lipid storage disease in mice. Cardiac-specific gene therapy of HDAC4-NT does not protect from intra-cardiomyocyte lipid accumulation but strikingly from heart failure, thereby challenging the concept of lipotoxicity-induced heart failure. ABHD5 levels are reduced in failing human hearts and murine transgenic ABHD5 expression protects from pressure-overload induced heart failure. These findings represent a conceptual advance by connecting lipid with glucose metabolism through HDAC4 proteolysis and enable new translational approaches to treat cardiometabolic disease.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Histona Desacetilases/metabolismo , Gotículas Lipídicas , Proteínas Repressoras/metabolismo , Células 3T3-L1 , Animais , Insuficiência Cardíaca/prevenção & controle , Humanos , Camundongos , Ligação Proteica , Proteólise , Serina Proteases/metabolismo
2.
Nat Med ; 24(1): 62-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227474

RESUMO

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Hexosaminas/biossíntese , Histona Desacetilases/metabolismo , Contração Miocárdica , Animais , Epigênese Genética , Técnicas de Transferência de Genes , Insuficiência Cardíaca/genética , Histona Desacetilases/genética , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Condicionamento Físico Animal , Proteólise , Molécula 1 de Interação Estromal/metabolismo
3.
J Cell Biol ; 195(3): 403-15, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22042619

RESUMO

Histone deacetylase 4 (HDAC4) regulates numerous gene expression programs through its signal-dependent repression of myocyte enhancer factor 2 (MEF2) and serum response factor (SRF) transcription factors. In cardiomyocytes, calcium/calmodulin-dependent protein kinase II (CaMKII) signaling promotes hypertrophy and pathological remodeling, at least in part by phosphorylating HDAC4, with consequent stimulation of MEF2 activity. In this paper, we describe a novel mechanism whereby protein kinase A (PKA) overcomes CaMKII-mediated activation of MEF2 by regulated proteolysis of HDAC4. PKA induces the generation of an N-terminal HDAC4 cleavage product (HDAC4-NT). HDAC4-NT selectively inhibits activity of MEF2 but not SRF, thereby antagonizing the prohypertrophic actions of CaMKII signaling without affecting cardiomyocyte survival. Thus, HDAC4 functions as a molecular nexus for the antagonistic actions of the CaMKII and PKA pathways. These findings have implications for understanding the molecular basis of cardioprotection and other cellular processes in which CaMKII and PKA exert opposing effects.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histona Desacetilases/metabolismo , Fatores de Regulação Miogênica/antagonistas & inibidores , Animais , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Imunofluorescência , Regulação da Expressão Gênica , Fatores de Transcrição MEF2 , Camundongos , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Proteólise , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...