Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Child Dev ; 95(4): e236-e252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38396333

RESUMO

This study investigated the neural basis of letter and speech sound (LS) integration in 53 typical readers (35 girls, all White) during the first 2 years of reading education (ages 7-9). Changes in both sensory (multisensory vs unisensory) and linguistic (congruent vs incongruent) aspects of LS integration were examined. The left superior temporal cortex and bilateral inferior frontal cortex showed increasing activation for multisensory over unisensory LS over time, driven by reduced activation to speech sounds. No changes were noted in the congruency effect. However, at age nine, heightened activation to incongruent over congruent LS pairs were observed, correlating with individual differences in reading development. This suggests that the incongruency effect evolves at varying rates depending on reading skills.


Assuntos
Leitura , Percepção da Fala , Humanos , Feminino , Masculino , Percepção da Fala/fisiologia , Criança , Desenvolvimento Infantil/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Lobo Frontal/fisiologia , Fonética
2.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050156

RESUMO

Reading acquisition involves the integration of auditory and visual stimuli. Thus, low-level audiovisual multisensory integration might contribute to disrupted reading in developmental dyslexia. Although dyslexia is more frequently diagnosed in males and emerging evidence indicates that the neural basis of dyslexia might differ between sexes, previous studies examining multisensory integration did not evaluate potential sex differences nor tested its neural correlates. In the current study on 88 adolescents and young adults, we found that only males with dyslexia showed a deficit in multisensory integration of simple nonlinguistic stimuli. At the neural level, both females and males with dyslexia presented smaller differences in response to multisensory compared to those in response to unisensory conditions in the N1 and N2 components (early components of event-related potentials associated with sensory processing) than the control group. Additionally, in a subsample of 80 participants matched for nonverbal IQ, only males with dyslexia exhibited smaller differences in the left hemisphere in response to multisensory compared to those in response to unisensory conditions in the N1 component. Our study indicates that deficits of multisensory integration seem to be more severe in males than females with dyslexia. This provides important insights into sex-modulated cognitive processes that might confer vulnerability to reading difficulties.


Assuntos
Percepção Auditiva , Dislexia , Adolescente , Adulto Jovem , Humanos , Masculino , Feminino , Percepção Auditiva/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Caracteres Sexuais , Estimulação Acústica
3.
J Exp Psychol Gen ; 153(2): 293-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37917440

RESUMO

The left ventral occipito-temporal (lvOT) cortex is considered to house the brain's representation of orthography (i.e., the spelling patterns of words). Because letter-sound coupling is crucial in reading, we investigated the engagement of the lvOT cortex in processing phonology (i.e., the sound patterns of words) as a function of reading acquisition. We tested 47 Polish children both at the beginning of formal literacy instruction and 2 years later. During functional magnetic resonance imaging, children performed auditory phonological tasks from small to large grain size levels (i.e., single phoneme, rhyme). We showed that orthographically relevant lvOT areas activated during small-grain size phonological tasks were skill-dependent, perhaps due to the relatively transparent mappings between orthography and phonology in Polish. We also studied activation pattern similarity between processing visual and auditory word stimuli in the lvOT. We found that a higher similarity level was observed in the anterior lvOT compared to the posterior lvOT after 2 years of schooling. This is consistent with models proposing a posterior-to-anterior shift in word processing during reading acquisition. We argue that the development of orthography-phonology coupling at the brain level reflects writing system-specific effects and a more universal pathway of the left vOT development in reading acquisition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Leitura , Lobo Temporal , Criança , Humanos , Lobo Temporal/fisiologia , Lobo Occipital/fisiologia , Linguística , Idioma , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Fonética
4.
Front Hum Neurosci ; 17: 1228808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125712

RESUMO

The role of the left ventral occipitotemporal cortex (vOT) in reading is well-established in both sighted and blind readers. Its role in speech processing remains only partially understood. Here, we test the involvement of the left vOT in phonological processing of spoken language in the blind (N = 50, age: 6.76-60.32) and in the sighted (N = 54, age: 6.79-59.83) by means of whole-brain and region-of-interest (including individually identified) fMRI analyses. We confirm that the left vOT is sensitive to phonological processing (shows greater involvement in rhyming compared to control spoken language task) in both blind and sighted participants. However, in the sighted, the activation was observed only during the rhyming task and in the speech-specific region of the left vOT, pointing to task and modality specificity. In contrast, in the blind group, the left vOT was active during speech processing irrespective of task and in both speech and reading-specific vOT regions. Only in the blind, the left vOT presented a higher degree of sensitivity to phonological processing than other language nodes in the left inferior frontal and superior temporal cortex. Our results suggest a changed development of the left vOT sensitivity to spoken language, resulting from visual deprivation.

5.
Front Hum Neurosci ; 17: 1199366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576470

RESUMO

The left ventral occipitotemporal cortex has been traditionally viewed as a pathway for visual object recognition including written letters and words. Its crucial role in reading was strengthened by the studies on the functionally localized "Visual Word Form Area" responsible for processing word-like information. However, in the past 20 years, empirical studies have challenged the assumptions of this brain region as processing exclusively visual or even orthographic stimuli. In this review, we aimed to present the development of understanding of the left ventral occipitotemporal cortex from the visually based letter area to the modality-independent symbolic language related region. We discuss theoretical and empirical research that includes orthographic, phonological, and semantic properties of language. Existing results showed that involvement of the left ventral occipitotemporal cortex is not limited to unimodal activity but also includes multimodal processes. The idea of the integrative nature of this region is supported by the broad functional and structural connectivity with language-related and attentional brain networks. We conclude that although the function of the area is not yet fully understood in human cognition, its role goes beyond visual word form processing. The left ventral occipitotemporal cortex seems to be crucial for combining higher-level language information with abstract forms that convey meaning independently of modality.

6.
Neuroimage ; 278: 120296, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495199

RESUMO

Learning letter and speech sound (LS) associations is a major step in reading acquisition common for all alphabetic scripts, including Braille used by blind readers. The left superior temporal cortex (STC) plays an important role in audiovisual LS integration in sighted people, but it is still unknown what neural mechanisms are responsible for audiotactile LS integration in blind individuals. Here, we investigated the similarities and differences between LS integration in blind Braille (N = 42, age range: 9-60 y.o.) and sighted print (N = 47, age range: 9-60 y.o.) readers who acquired reading using different sensory modalities. In both groups, the STC responded to both isolated letters and isolated speech sounds, showed enhanced activation when they were presented together, and distinguished between congruent and incongruent letter and speech sound pairs. However, the direction of the congruency effect was different between the groups. Sighted subjects showed higher activity for incongruent LS pairs in the bilateral STC, similarly to previously studied typical readers of transparent orthographies. In the blind, congruent pairs resulted in an increased response in the right STC. These differences may be related to more sequential processing of Braille as compared to print reading. At the same time, behavioral efficiency in LS discrimination decisions and the congruency effect were found to be related to age and reading skill only in sighted participants, suggesting potential differences in the developmental trajectories of LS integration between blind and sighted readers.


Assuntos
Fonética , Percepção Visual , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Percepção Visual/fisiologia , Mapeamento Encefálico , Cegueira , Aprendizagem , Leitura
7.
Cortex ; 162: 65-80, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003099

RESUMO

The Triple-Code Model stipulates that numerical information from different formats and modalities converges on a common magnitude representation in the Intraparietal Sulcus (IPS). To what extent the representations of all numerosity forms overlap remains unsolved. It has been postulated that the representation of symbolic numerosities (for example, Arabic digits) is sparser and grounded in an existing representation that codes for non-symbolic numerosity information (i.e., sets of objects). Other theories argue that numerical symbols represent a separate number category that emerges only during education. Here, we tested a unique group of sighted tactile Braille readers with numerosities 2, 4, 6 and 8 in three number notations: Arabic digits, sets of dots, tactile Braille numbers. Using univariate methods, we showed a consistent overlap in activations evoked by these three number notations. This result shows that all three used notations are represented in the IPS, which may suggest at least a partial overlap between the representations of the three notations used in this experiment. Using MVPA, we found that only non-automatized number information (Braille and sets of dots) allowed successful number classification. However, the numerosity of one notation could not be predicted above chance from the brain activation patterns evoked by another notation (no cross-classification). These results show that the IPS may host independent number codes in overlapping cortical circuits. In addition, they suggest that the level of training in encoding a given type of number information is an important factor that determines the amount of exploitable information and needs to be controlled for in order to identify the neural code underlying numerical information per se.


Assuntos
Idioma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/fisiologia , Tato , Mapeamento Encefálico
8.
Cortex ; 160: 134-151, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841094

RESUMO

Learning to read impacts the way the ventral occipitotemporal cortex (VOT) reorganizes. The postulated underlying mechanism of neuronal recycling was recently revisited. Neuroimaging data showed that voxels weakly specialized for visual processing keep their initial category selectivity (i.e., object or face processing) while acquiring an additional and stronger responsivity to written words. Here, we examined a large and diverse group of six-year-olds prior to formal literacy training (N = 72) using various data analysis techniques (univariate, multivariate, rapid adaptation) and types of stimuli (print, false fonts, houses, faces) to further explore how VOT changes and adapts to the novel skill of reading. We found that among several visual stimuli categories only print activated a wide network of language related areas outside of the bilateral visual cortex, and the level of reading skill was related to the strength of this activation, showing the development of the reading circuit. Rapid adaptation was not directly related to the level of reading skill in the young children studied here, but it clearly revealed the emergence of the reading network in readers. Most importantly, we found that the reorganization of the VOT is not in fact an "invasion" by reading acquisition-voxels previously activated for faces started to respond more for print, while at the same time keeping their previous function. We can thus conclude that the revised hypothesis of neuronal recycling is supported by our data.


Assuntos
Lobo Temporal , Córtex Visual , Criança , Humanos , Pré-Escolar , Lobo Temporal/fisiologia , Aprendizagem , Córtex Visual/fisiologia , Córtex Cerebral , Idioma , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Lobo Occipital/fisiologia
9.
Neuropsychologia ; 172: 108257, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35561814

RESUMO

Previous behavioural and neuroimaging studies have consistently reported that memory is enhanced for associations congruent or incongruent with the structure of prior knowledge, termed as schemas. However, it remains unclear if similar effects arise with emotion-related associations, and whether they depend on the type of emotions. Here, we addressed this question using a novel face-word pair association paradigm combined with fMRI and eye-tracking techniques. In two independent studies, we demonstrated and replicated that both congruency with emotion schemas and emotion category interact to affect associative memory. Overall, memory retrieval was higher for faces from pairs congruent vs. incongruent with emotion schemas, paralleled by a greater recruitment of left inferior frontal gyrus (IFG) during successful encoding. However, emotion schema effects differed across two negative emotion categories. Disgust was remembered better than fear, and only disgust activated left IFG stronger during encoding of congruent vs. incongruent pairs, suggestive of deeper semantic processing for the associations. On the contrary, encoding of congruent fear vs. disgust-related pairs was accompanied with greater activity in right fusiform gyrus (FG), suggesting a stronger sensory processing of faces. In addition, successful memory formation for congruent disgust pairs was associated with a higher pupil dilation index related to sympathetic activation, longer gaze time on words compared to faces, and more gaze switches between paired words and faces. This was reversed for fear-related congruent pairs where the faces attracted longer gaze time (compared to words). Overall, our results provide converging evidence from behavioural, physiological, and neural measures to suggest that congruency with available emotion schemas influence memory associations in a similar manner to semantic schemas. However, these effects vary across distinct emotion categories, pointing to a differential role of semantic processing and visual attention processes in the modulation of memory by disgust and fear, respectively.


Assuntos
Emoções , Memória , Asco , Emoções/fisiologia , Tecnologia de Rastreamento Ocular , Medo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Memória/fisiologia , Rememoração Mental/fisiologia
10.
Neuroimage ; 251: 118889, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065268

RESUMO

Current models of episodic memory posit that retrieval involves the reenactment of encoding processes. Recent evidence has shown that this reinstatement process - indexed by subsequent encoding-retrieval similarity of brain activity patterns - is related to the activity in the hippocampus during encoding. However, we tend to re-experience emotional events in memory more richly than dull events. The role of amygdala - a critical hub of emotion processing - in reinstatement of emotional events was poorly understood. To investigate it, we leveraged a previously overlooked divergence in the role of amygdala in memory modulation by distinct emotions - disgust and fear. Here we used a novel paradigm in which participants encoded complex events (word pairs) and their memory was tested after 3 weeks, both phases during fMRI scanning. Using representational similarity analysis and univariate analyses, we show that the strength of amygdala activation during encoding was correlated with memory reinstatement of individual event representations in emotion-specific regions. Critically, amygdala modulated reinstatement more for disgust than fear. This was in line with other differences observed at the level of memory performance and neural mechanisms of encoding. Specifically, amygdala and perirhinal cortex were more involved during encoding of disgust-related events, whereas hippocampus and parahippocampal gyrus during encoding of fear-related events. Together, these findings shed a new light on the role of the amygdala and medial temporal lobe regions in encoding and reinstatement of specific emotional memories.


Assuntos
Asco , Tonsila do Cerebelo/diagnóstico por imagem , Mapeamento Encefálico , Medo , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal/fisiologia
11.
Dev Sci ; 25(2): e13173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34448328

RESUMO

This study focuses on the role of numerous cognitive skills such as phonological awareness (PA), rapid automatized naming (RAN), visual and selective attention, auditory skills, and implicit learning in developmental dyslexia. We examined the (co)existence of cognitive deficits in dyslexia and assessed cognitive skills' predictive value for reading. First, we compared school-aged children with severe reading impairment (n = 51) to typical readers (n = 71) to explore the individual patterns of deficits in dyslexia. Children with dyslexia, as a group, presented low PA and RAN scores, as well as limited implicit learning skills. However, we found no differences in the other domains. We found a phonological deficit in 51% and a RAN deficit in 26% of children with dyslexia. These deficits coexisted in 14% of the children. Deficits in other cognitive domains were uncommon and most often coexisted with phonological or RAN deficits. Despite having a severe reading impairment, 26% of children with dyslexia did not present any of the tested deficits. Second, in a group of children presenting a wide range of reading abilities (N = 211), we analysed the relationship between cognitive skills and reading level. PA and RAN were independently related to reading abilities. Other skills did not explain any additional variance. The impact of PA and RAN on reading skills differed. While RAN was a consistent predictor of reading, PA predicted reading abilities particularly well in average and good readers with a smaller impact in poorer readers.


Assuntos
Dislexia , Fonética , Aptidão , Conscientização , Criança , Cognição , Dislexia/psicologia , Humanos
12.
Brain Topogr ; 35(2): 219-231, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775569

RESUMO

Stress may impact the ability to effectively regulate emotions. To study the impact of stressful experiences in early and recent life on emotion regulation, we examined the relationship between early life stress, recent stress, and brain activation during cognitive reappraisal. We investigated two regulation goals: the decrease and increase of emotional response to both negative and positive stimuli. Furthermore, two models of stress consequences were examined: the cumulative and match/mismatch models. A total of 83 participants (Mage = 21.66) took part in the study. There was an interaction between cumulative stress and stimuli valence in the cuneus, superior lateral occipital cortex, superior parietal lobule, supramarginal gyrus extending to superior temporal gyrus, and precentral gyrus extending to supplementary motor area. Interaction between mismatched stress index and stimuli valence was found in the left hippocampus, left insula extending to the orbitofrontal cortex and amygdala, and in a cluster including the anterior cingulate cortex, superior frontal gyrus, and frontal pole. Furthermore, there were differences between the effects of cumulative and mismatched stress indices on brain activation during reappraisal of positive but not negative stimuli. Results indicate that cumulative stress and match/mismatch approaches are both useful for explaining brain activation during reappraisal. This finding is important for our understanding of the multifaceted impact of stress on emotion regulation.


Assuntos
Regulação Emocional , Imageamento por Ressonância Magnética , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Emoções/fisiologia , Humanos , Estresse Psicológico/diagnóstico por imagem , Adulto Jovem
13.
J Neurosci ; 41(33): 7076-7085, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34253624

RESUMO

The white matter (WM) architecture of the human brain changes in response to training, though fine-grained temporal characteristics of training-induced white matter plasticity remain unexplored. We investigated white matter microstructural changes using diffusion tensor imaging at five different time points in 26 sighted female adults during 8 months of training on tactile braille reading. Our results show that training-induced white matter plasticity occurs both within and beyond the trained sensory modality, as reflected by fractional anisotropy (FA) increases in somatosensory and visual cortex, respectively. The observed changes followed distinct time courses, with gradual linear FA increase along the training in the somatosensory cortex and sudden visual cortex cross-modal plasticity occurring after braille input became linguistically meaningful. WM changes observed in these areas returned to baseline after the cessation of learning in line with the supply-demand model of plasticity. These results also indicate that the temporal dynamics of microstructural plasticity in different cortical regions might be modulated by the nature of computational demands. We provide additional evidence that observed FA training-induced changes are behaviorally relevant to tactile reading. Together, these results demonstrate that WM plasticity is a highly dynamic process modulated by the introduction of novel experiences.SIGNIFICANCE STATEMENT Throughout the lifetime the human brain is shaped by various experiences. Training-induced reorganization in white matter (WM) microstructure has been reported, but we know little about its temporal dynamics. To fill this gap, we scanned sighted subjects five times during tactile braille reading training. We observed different dynamics of WM plasticity in the somatosensory and visual cortices implicated in braille reading. The former showed a continuous increase in WM tissue anisotropy along with tactile training, while microstructural changes in the latter were observed only after the participants learned to read braille words. Our results confirm the supply-demand model of brain plasticity and provide evidence that WM reorganization depends on distinct computational demands and functional roles of regions involved in the trained skill.


Assuntos
Aprendizagem por Associação/fisiologia , Imagem de Tensor de Difusão , Plasticidade Neuronal/fisiologia , Leitura , Auxiliares Sensoriais , Tato/fisiologia , Visão Ocular/fisiologia , Substância Branca/fisiologia , Adulto , Feminino , Humanos , Desempenho Psicomotor/fisiologia , Fatores de Tempo , Transtornos da Visão , Adulto Jovem
14.
J Abnorm Psychol ; 130(3): 286-296, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33856819

RESUMO

Being a late talker constitutes a risk factor for later neurodevelopmental disorders; however, its neurobiological basis remains unexplored. We aimed to determine the unique and mutual correlates of late talking and developmental dyslexia on brain structure and behavioral outcomes in a large sample of 8- to 10-year-old children in a between-groups design (N = 120). Brain structure was examined using voxel-based morphometry (to measure gray matter volume) and surface-based morphometry (to measure gray matter volume, cortical thickness, surface area, and curvature of the cortex). Behaviorally, late talking and dyslexia are independently connected to language and literacy skills, and late talkers have difficulties in grammar, phonological awareness, and reading accuracy. Children with dyslexia show impairments in all of the above, as well as in vocabulary, spelling, reading speed, and rapid automatized naming. Neuroanatomically, dyslexia is related to lower total intracranial volume and total surface area. Late talking is related to reduced cortical thickness in the left posterior cingulate gyrus and the right superior temporal gyrus, which are structures belonging to the dorsal speech articulatory-phonetic perception system. Finally, a cumulative effect of late talking and dyslexia was found on the left fusiform gray matter volume. This might explain inconsistencies in previous neuroanatomical studies of dyslexia. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Encéfalo/anatomia & histologia , Dislexia/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Criança , Feminino , Substância Cinzenta/anatomia & histologia , Humanos , Masculino , Tamanho do Órgão , Tempo
15.
Front Neurosci ; 15: 630829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776638

RESUMO

Learning to play a musical instrument is a complex task that integrates multiple sensory modalities and higher-order cognitive functions. Therefore, musical training is considered a useful framework for the research on training-induced neuroplasticity. However, the classical nature-or-nurture question remains, whether the differences observed between musicians and non-musicians are due to predispositions or result from the training itself. Here we present a review of recent publications with strong focus on experimental designs to better understand both brain reorganization and the neuronal markers of predispositions when learning to play a musical instrument. Cross-sectional studies identified structural and functional differences between the brains of musicians and non-musicians, especially in regions related to motor control and auditory processing. A few longitudinal studies showed functional changes related to training while listening to and producing music, in the motor network and its connectivity with the auditory system, in line with the outcomes of cross-sectional studies. Parallel changes within the motor system and between the motor and auditory systems were revealed for structural connectivity. In addition, potential predictors of musical learning success were found including increased brain activation in the auditory and motor systems during listening, the microstructure of the arcuate fasciculus, and the functional connectivity between the auditory and the motor systems. We show that "the musical brain" is a product of both the natural human neurodiversity and the training practice.

16.
Brain Struct Funct ; 226(5): 1467-1478, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33761000

RESUMO

There is an ongoing debate concerning the extent to which deficits in reading and spelling share cognitive components and whether they rely, in a similar fashion, on sublexical and lexical pathways of word processing. The present study investigates whether the neural substrates of word processing differ in children with various patterns of reading and spelling deficits. Using functional magnetic resonance imaging, we compared written and auditory processing in three groups of 9-13-year olds (N = 104): (1) with age-adequate reading and spelling skills; (2) with reading and spelling deficits (i.e., dyslexia); (3) with isolated spelling deficits but without reading deficits. In visual word processing, both deficit groups showed hypoactivations in the posterior superior temporal cortex compared to typical readers and spellers. Only children with dyslexia exhibited hypoactivations in the ventral occipito-temporal cortex compared to the two groups of typical readers. This is the result of an atypical pattern of higher activity in the occipito-temporal cortex for non-linguistic visual stimuli than for words, indicating lower selectivity. The print-speech convergence was reduced in the two deficit groups. Impairments in lexico-orthographic regions in a reading-based task were associated primarily with reading deficits, whereas alterations in the sublexical word processing route could be considered common for both reading and spelling deficits. These findings highlight the partly distinct alterations of the language network related to reading and spelling deficits.


Assuntos
Dislexia , Leitura , Criança , Humanos , Fonética , Processamento de Texto
17.
NPJ Sci Learn ; 6(1): 4, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526791

RESUMO

Literacy development is a process rather than a single event and thus should be studied at multiple time points. A longitudinal design employing neuroimaging methods offers the possibility to identify neural changes associated with reading development, and to reveal early markers of dyslexia. The core of this review is a summary of findings from longitudinal neuroimaging studies on typical and atypical reading development. Studies focused on the prediction of reading gains with a single neuroimaging time point complement this review. Evidence from structural studies suggests that reading development results in increased structural integrity and functional specialization of left-hemispheric language areas. Compromised integrity of some of these tracts in children at risk for dyslexia might be compensated by higher anatomical connectivity in the homologous right hemisphere tracts. Regarding function, activation in phonological and audiovisual integration areas and growing sensitivity to print in the ventral occipito-temporal cortex (vOT) seem to be relevant neurodevelopmental markers of successful reading acquisition. Atypical vOT responses at the beginning of reading training and infant auditory brain potentials have been proposed as neuroimaging predictors of dyslexia that can complement behavioral measures. Besides these insights, longitudinal neuroimaging studies on reading and dyslexia are still relatively scarce and small sample sizes raise legitimate concerns about the reliability of the results. This review discusses the challenges of these studies and provides recommendations to improve this research area. Future longitudinal research with larger sample sizes are needed to improve our knowledge of typical and atypical reading neurodevelopment.

18.
Neuroimage ; 231: 117851, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582273

RESUMO

All writing systems represent units of spoken language. Studies on the neural correlates of reading in different languages show that this skill relies on access to brain areas dedicated to speech processing. Speech-reading convergence onto a common perisylvian network is therefore considered universal among different writing systems. Using fMRI, we test whether this holds true also for tactile Braille reading in the blind. The neural networks for Braille and visual reading overlapped in the left ventral occipitotemporal (vOT) cortex. Even though we showed similar perisylvian specialization for speech in both groups, blind subjects did not engage this speech system for reading. In contrast to the sighted, speech-reading convergence in the blind was absent in the perisylvian network. Instead, the blind engaged vOT not only in reading but also in speech processing. The involvement of the vOT in speech processing and its engagement in reading in the blind suggests that vOT is included in a modality independent language network in the blind, also evidenced by functional connectivity results. The analysis of individual speech-reading convergence suggests that there may be segregated neuronal populations in the vOT for speech processing and reading in the blind.


Assuntos
Cegueira/fisiopatologia , Leitura Labial , Rede Nervosa/fisiologia , Lobo Occipital/fisiologia , Leitura , Lobo Temporal/fisiologia , Tato/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Cegueira/diagnóstico por imagem , Auxiliares de Comunicação para Pessoas com Deficiência , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Lobo Occipital/diagnóstico por imagem , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
19.
Neuroimage ; 226: 117544, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220408

RESUMO

During foreign language acquisition neural representations of native language and foreign language assimilate. In the reading network, this assimilation leads to a shift from effortful processing to automated reading. Longitudinal studies can track this transition and reveal dynamics that might not become apparent in behavior. Here, we report results from a longitudinal functional magnetic resonance imaging (fMRI) study, which tracked functional changes in the reading network of beginning learners of Greek over one year. We deliberately chose Greek as foreign language that would have similar orthographic transparency but a different alphabet than the native language (Polish). fMRI scans with lexical and semantic decision tasks were performed at five different time points (every ~3 months). Classical language areas (the left inferior frontal gyrus, the left precentral gyrus, and the bilateral supplementary motor cortex), and cognitive control areas (left inferior parietal lobe and bilateral anterior cingulate cortex) showed stronger activation after the first months of instruction as compared to the activation before instruction. This pattern occured in both tasks. Task-related activity in the reading network remained constant throughout the remaining 6 months of learning and was also present in a follow-up scan 3 months after the end of the course. A similar pattern was demonstrated by the analysis of convergence between foreign and native languages occurring within the first months of learning. Additionally, in the lexical task, the extent of spatial overlap, between foreign and native language in Broca's area increased constantly from the beginning till the end of training. Our findings support the notion that reorganization of language networks is achieved after a relatively short time of foreign language instruction. We also demonstrate that cognitive control areas are recruited in foreign language reading at low proficiency levels. No apparent changes in the foreign or native reading network occur after the initial 3 months of learning. This suggests that task demand might be more important than proficiency in regulating the resources needed for efficient foreign language reading.


Assuntos
Encéfalo/diagnóstico por imagem , Idioma , Multilinguismo , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Leitura , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
20.
Neuroimage ; 227: 117613, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33307223

RESUMO

A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Leitura , Auxiliares Sensoriais , Percepção do Tato/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...