Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 17075-17085, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912604

RESUMO

High-performance organic photodiodes (OPDs) and OPD-based image sensors are primarily realized using solution processes based on various additives and coating methods. However, vacuum-processed OPDs, which are more compatible with large-scale production, have received little attention, thereby hindering their integration into advanced systems. This study introduces innovations in the material and device structures to prepare superior vacuum-processed OPDs for commercial applications. A series of vacuum-processable, low-cost p-type semiconductors is developed by introducing an electron-rich cyclopentadithiophene core containing various electron-accepting moieties to fine-tune the energy levels without any significant structural or molecular weight changes. An additional nanointerlayer strategy is used to control the crystalline orientation of the upper-deposited photoactive layer, compensating for device performance reduction in inverted, top-illuminated OPDs. These approaches yielded an external quantum efficiency of 70% and a specific detectivity of 2.0 × 1012 Jones in the inverted structures, which are vital for commercial applications. These OPDs enabled visible-light communications with extremely low bit error rates and successful X-ray image capture.

2.
Adv Mater ; 36(4): e2309416, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856894

RESUMO

A multichannel/multicolor visible light communication (VLC) system using entirely organic components, including organic light emitting diodes (OLEDs) and organic photodiodes (OPDs), is developed to demonstrate indoor lighting applications where the integration of OLEDs and OPDs has significant potential. To achieve this, tricolor (Red/Green/Blue(R/G/B))-selective OPD arrays for the receiver and tricolor OLED arrays for the emitter are developed. For (R/G/B)-selective OPDs, a Fabry-Pérot electrode to enhance color selectivity and a thick junction structure to effectively accommodate a wide range of driving voltages are introduced. For tricolor OLEDs, fluorescent-emitting materials are used to enhance the operating frequency in addition to introducing a cavity structure to achieve narrow emission. Utilizing these spectrally refined tricolor OPDs/OLEDs, a VLC system is designed for indoor lighting applications, and a systematic analysis of their signal-to-interference ratio dependence on the distance or angle between the transmitter and receiver is performed. The study's findings indicate the importance of emission angle-dependent wavelength shift of the OLED and the luminosity function, which varies with wavelength, in the R/G/B mixed-white-light-based VLC systems. Finally, the feasibility of VLC using tricolor OPDs/OLEDs in the real-life context of indoor white-color lighting is demonstrated, showing that the transmitted data patterns well-matched the received data patterns.

3.
Adv Mater ; 34(17): e2200526, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35233855

RESUMO

When the intensity of the incident light increases, the photocurrents of organic photodiodes (OPDs) exhibit relatively early saturation, due to which OPDs cannot easily detect objects against strong backlights, such as sunlight. In this study, this problem is addressed by introducing a light-intensity-dependent transition of the operation mode, such that the operation mode of the OPD autonomously changes to overcome early photocurrent saturation as the incident light intensity passes the threshold intensity. The photoactive layer is doped with a strategically designed and synthesized molecular switch, 1,2-bis-(2-methyl-5-(4-cyanobiphenyl)-3-thienyl)tetrafluorobenzene (DAB). The proposed OPD exhibits a typical OPD performance with an external quantum efficiency (EQE) of <100% and a photomultiplication behavior with an EQE of >100% under low-intensity and high-intensity light illuminations, respectively, thereby resulting in an extension of the photoresponse linearity to a light intensity of 434 mW cm-2 . This unique and reversible transition of the operation mode can be explained by the unbalanced quantum yield of photocyclization/photocycloreversion of the molecular switch. The details of the operation mechanism are discussed in conjunction with various photophysical analyses. Furthermore, they establish a prototype image sensor with an array of molecular-switch-embedded OPD pixels to demonstrate their extremely high sensitivity against strong light illumination.

4.
IEEE Trans Biomed Circuits Syst ; 15(6): 1140-1148, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34784285

RESUMO

This paper presents a 288-pixel retinal prosthesis (RP) chip implemented in a 0.18 µm CMOS process. The proposed light-to-stimulus duration converter (LSDC) and biphasic stimulator generate a wide range of retinal stimuli proportional to the incident light intensity at a low supply voltage of 1V. The implemented chip shows 25.5 dB dynamic stimulation range and the state-of-the art low power consumption of 4.49 nW/pixel. Ex-vivo experiments were performed with a mouse retina and patch-clamp recording. The electrical artifact recorded by the patch electrode demonstrates that the proposed chip can generate electrical stimuli that have different pulse durations depending on the light intensity. Correspondingly, the spike counts in a retinal ganglion cell (RGC) were successfully modulated by the brightness of the light stimuli.


Assuntos
Próteses Visuais , Animais , Estimulação Elétrica , Eletrodos , Luz , Camundongos , Retina/fisiologia , Células Ganglionares da Retina/fisiologia
5.
IEEE Trans Biomed Circuits Syst ; 14(1): 12-19, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31725387

RESUMO

This paper presents a simultaneous bidirectional asymmetrical serial interface architecture for sensor systems. The proposed current/voltage dual-mode signaling scheme provides system synchronous clock and continuous data transmission between sensor integrated circuit (IC) and system-on-a-chip (SoC) using a single wire, which minimizes pin requirements on packages. Two types of transceiver circuits were implemented in a 65 nm CMOS technology for the sensor IC and the SoC, and they were designed for transmission rates of 1 Mb/s and 250 Kb/s, core areas of 0.008 mm2 and 0.142 mm2, and power consumptions of 7.1 µW and 145.8 µW, respectively. The transceiver circuit for the sensor IC was also applied to a monolithic PPG sensor implemented in 180 nm CMOS, and the acquisition and transmission of PPG sensor data with the transceiver for the SoC, implemented in 65 nm, was successfully achieved.


Assuntos
Técnicas Biossensoriais/instrumentação , Desenho de Equipamento/métodos , Instalação Elétrica , Dispositivos Lab-On-A-Chip , Dispositivos Eletrônicos Vestíveis
6.
IEEE Trans Biomed Circuits Syst ; 7(6): 785-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24473543

RESUMO

A low-power analog signal processing IC is presented for the low-power heart rhythm analysis. The ASIC features 3 identical, but independent intra-ECG readout channels each equipping an analog QRS feature extractor for low-power consumption and fast diagnosis of the fatal case. A 16-level digitized sine-wave synthesizer together with a synchronous readout circuit can measure bio-impedance in the range of 0.1-4.4 kΩ with 33 mΩ(rms) resolution and higher than 97% accuracy. The proposed 25 mm² ASIC consumes only 13 µA from 2.2 V. It is a highly integrated solution offering all the functionality of acquiring multiple high quality intra-cardiac signals, requiring only a few limited numbers of external passives.


Assuntos
Eletrocardiografia/instrumentação , Eletrônica Médica/instrumentação , Marca-Passo Artificial , Próteses e Implantes , Processamento de Sinais Assistido por Computador/instrumentação , Algoritmos , Desenho de Equipamento , Frequência Cardíaca/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...