Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(4): 3180-3188, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31985208

RESUMO

Immunoprobed isoelectric focusing (IEF) resolves proteins based on differences in isoelectric point (pI) and then identifies protein targets through immunoprobing of IEF-separated proteins that have been immobilized onto a gel scaffold. During the IEF stage, the gel functions as an anti-convective medium and not as a molecular sieving matrix. During the immunoprobing stage, the gel acts as an immobilization scaffold for IEF-focused proteins via photoactive moieties. Here, we characterized the effect of gel pore size on IEF separation and in-gel immunoassay performance. We modulated polyacrylamide (PA) gel pore size via lateral chain aggregation initiated by PEG monomers. During IEF, the 2% PEG highly porous PA gel formulation offered higher resolution (minimum pI difference ∼0.07 ± 0.02) than unmodified 6%T, 3.3%C (benchmark) and 6%T, 8%C (negative control) PA gels. The highly porous gels supported a pH gradient with slope and linearity comparable to benchmark gels. The partition coefficient for antibodies into the highly porous gels (K = 0.35 ± 0.02) was greater than the benchmark (3×) and negative control (1.75×) gels. The highly porous gels also had lower immunoassay background signal than the benchmark (2×) and negative control (3×) gels. Taken together, lateral aggregation creates PA gels that are suitable for both IEF and subsequent in-gel immunoprobing by mitigating immunoprobe exclusion from the gels while facilitating removal of unbound immunoprobe.


Assuntos
Resinas Acrílicas/química , Focalização Isoelétrica/métodos , Géis , Porosidade , Termodinâmica
2.
Adv Funct Mater ; 30(45)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33708029

RESUMO

Modular strategies to fabricate gels with tailorable chemical functionalities are relevant to applications spanning from biomedicine to analytical chemistry. Here, the properties of clickable poly(acrylamide-co-propargyl acrylate) (pAPA) hydrogels are modified via sequential in-gel copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. Under optimized conditions, each in-gel CuAAC reaction proceeds with rate constants of ~0.003 s-1, ensuring uniform modifications for gels < 200 µm thick. Using the modular functionalization approach and a cleavable disulfide linker, pAPA gels were modified with benzophenone and acrylate groups. Benzophenone groups allow gel functionalization with unmodified proteins using photoactivation. Acrylate groups enabled copolymer grafting onto the gels. To release the functionalized unit, pAPA gels were treated with disulfide reducing agents, which triggered ~50 % release of immobilized protein and grafted copolymers. The molecular mass of grafted copolymers (~6.2 kDa) was estimated by monitoring the release process, expanding the tools available to characterize copolymers grafted onto hydrogels. Investigation of the efficiency of in-gel CuAAC reactions revealed limitations of the sequential modification approach, as well as guidelines to convert a pAPA gel with a single functional group into a gel with three distinct functionalities. Taken together, we see this modular framework to engineer multifunctional hydrogels as benefiting applications of hydrogels in drug delivery, tissue engineering, and separation science.

3.
APL Bioeng ; 3(2): 026101, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069338

RESUMO

Understanding and controlling molecular transport in hydrogel materials is important for biomedical tools, including engineered tissues and drug delivery, as well as life sciences tools for single-cell analysis. Here, we scrutinize the ability of microwells-micromolded in hydrogel slabs-to compartmentalize lysate from single cells. We consider both (i) microwells that are "open" to a large fluid (i.e., liquid) reservoir and (ii) microwells that are "closed," having been capped with either a slab of high-density polyacrylamide gel or an impermeable glass slide. We use numerical modeling to gain insight into the sensitivity of time-dependent protein concentration distributions on hydrogel partition and protein diffusion coefficients and open and closed microwell configurations. We are primarily concerned with diffusion-driven protein loss from the microwell cavity. Even for closed microwells, confocal fluorescence microscopy reports that a fluid (i.e., liquid) film forms between the hydrogel slabs (median thickness of 1.7 µm). Proteins diffuse from the microwells and into the fluid (i.e., liquid) layer, yet concentration distributions are sensitive to the lid layer partition coefficients and the protein diffusion coefficient. The application of a glass lid or a dense hydrogel retains protein in the microwell, increasing the protein solute concentration in the microwell by ∼7-fold for the first 15 s. Using triggered release of Protein G from microparticles, we validate our simulations by characterizing protein diffusion in a microwell capped with a high-density polyacrylamide gel lid (p > 0.05, Kolmogorov-Smirnov test). Here, we establish and validate a numerical model useful for understanding protein transport in and losses from a hydrogel microwell across a range of boundary conditions.

4.
Lab Chip ; 17(9): 1645-1654, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28418430

RESUMO

Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes.


Assuntos
Tecido Adiposo Branco , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Células 3T3 , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Animais , Simulação por Computador , Desenho de Equipamento , Humanos , Camundongos , Técnicas Analíticas Microfluídicas/métodos
5.
Adv Drug Deliv Rev ; 96: 203-13, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428618

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Achieving the next phase of potential treatment strategies and better prognostic tools will require a concerted effort from interdisciplinary fields. Biomaterials-based cardiac tissue models are revolutionizing the area of preclinical research and translational applications. The goal of in vitro cardiac tissue modeling is to create physiological functional models of the human myocardium, which is a difficult task due to the complex structure and function of the human heart. This review describes the advances made in area of in vitro cardiac models using biomaterials and bioinspired platforms. The field has progressed extensively in the past decade, and we envision its applications in the areas of drug screening, disease modeling, and precision medicine.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Células-Tronco Embrionárias/citologia , Humanos , Hidrogéis/química , Miócitos Cardíacos/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/tendências , Alicerces Teciduais/química
6.
Drug Deliv Transl Res ; 5(2): 160-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25787741

RESUMO

Gene delivery provides a powerful tool for regulating tissue regeneration by activating or inhibiting specific genes associated with targeted signaling pathways. Up-regulating bone morphogenetic protein-2 (BMP-2) or silencing GNAS and Noggin gene expression in stem cells has been shown to enhance osteogenic differentiation and bone tissue formation. However, few studies have examined how such gene delivery would influence other differentiated cell types residing in the bone. In this study, we examined the effects of DNA delivery of BMP-2 and siRNA delivery of GNAS or Noggin on a widely used human fetal osteoblast cell line (hFOB1.19) using biomaterials-mediated gene delivery. Our results showed that both GNAS and Noggin siRNA delivery increased cell death in hFOB1.19 in a dose-dependent manner. In particular, groups treated with the highest doses of BMP-2, siGNAS or siNoggin showed a more than 50% decline in cell proliferation and a 90% decline in cell viability compared to untransfected and sham DNA/siRNA-transfected controls. TUNEL staining showed that BMP-2, siGNAS or siNoggin induced cell apoptosis in hFOBs. In contrast, cells transfected using sham DNA or siRNA showed no noticeable cell death or apoptosis. These results elucidate the nuanced responses of progenitor and immortalized cell populations to the delivery of exogenous osteoinductive genes. In particular, they highlight the differences between immortalized and primary cell lines and underscore the importance of targeted gene delivery mechanisms in the regeneration of injured bone tissue.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteínas de Transporte/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Técnicas de Transferência de Genes , Morte Celular , Linhagem Celular , Cromograninas , DNA/genética , Feto , Humanos , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...