Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vet World ; 16(10): 2002-2015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38023279

RESUMO

Background and Aim: Antimicrobial resistance is an emerging public health threat. Foodborne illnesses are typically caused by bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Staphylococcus aureus, which are frequently resistant to common antimicrobial agents. Rice is a staple grain in most parts of the world. Our previous work showed that Phatthalung Sangyod rice seed protein hydrolysates (SYPs), especially SYP4, exhibit antifungal activity against several fungal species that are pathogenic for both humans and animals and are non-cytotoxic to animal red blood cells. In this study, we aimed to determine the effects of the bioactive peptides in SYPs against several pathogenic bacteria in humans and animals. Materials and Methods: After isolating SYP1, it was treated as follows: heated (SYP2), and hydrolyzed using pepsin (SYP3), and proteinase K (SYP4). Then, we used 500 µg of protein to evaluate the antibacterial effects on four pathogenic bacteria, including E. coli, P. aeruginosa, B. cereus, and S. aureus, using agar well diffusion. Using a broth microdilution assay, we determined the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) values of active SYPs. Using the agar well diffusion and microtube incubation methods, we also assessed the inhibitory effects of SYPs on the bacterial quorum sensing (QS) activity of Chromobacterium violaceum. Sangyod rice seed protein hydrolysates were evaluated for their ability to inhibit the biofilm formation of bacterial cells by a crytal violet assay. Furthermore, using the dropping method, we tested the inhibitory effects of SYPs on the bacterial pigments pyocyanin in P. aeruginosa and staphyloxanthin in S. aureus. Results: Our results showed that the crude protein lysate (SYP1) did not exhibit antibacterial activity against any of the test bacteria. Intriguingly, after boiling (SYP2) and enzymatic hydrolysis (SYP3 and SYP4), the protein hydrolysates were transformed into bioactive peptides and displayed antibacterial properties against all of the test bacteria at a concentration of 500 µg as determined by agar well diffusion. SYP4 demonstrated the highest antibacterial activity as it completely inhibited all test strains, with inhibition zones ranging from 16.88 ± 0.25 to 21.25 ± 0.5 mm, and also yielded the highest MIC/MBC values against P. aeruginosa, B. cereus, and E. coli, at 256 and >256 µg/mL, respectively. We observed that at least 256 µg/mL of SYP4 is required to exhibit optimal antibacterial activity. At 16-128 µg/mL, it exhibited antibiofilm activity against S. aureus. Furthermore, at 256 µg/mL, SYP4 inhibited pyocyanin in P. aeruginosa and staphyloxanthin in S. aureus. Although SYP2 and SYP3 displayed weak antibacterial activity and their MIC values could not be obtained for all bacteria, they showed strong QS inhibition in C. violaceum at 256 µg protein. Moreover, SYP2 and SYP3, at a minimum concentration of 32 µg/mL, significantly reduced violacein production. SYP3 also showed biofilm reduction activity on S. aureus at least 16-512 µg/mL. Conclusion: Sangyod Phatthalung protein hydrolysates exerted excellent inhibitory effects against the growth of bacteria and their virulence factors, such as QS, biofilm formation, and/or pigment production. These factors include zoonotic and foodborne pathogens. Therefore, daily consumption of Sangyod Phatthalung rice might reduce the risk of bacterial pathogenesis and foodborne diseases. In conclusion, functional foods or alternate methods of treating bacterial illnesses may be developed in humans and animals.

2.
Vet World ; 16(7): 1541-1545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621534

RESUMO

Background and Aim: Immune cells require toll-like receptor 4 (TLR4) to respond to lipopolysaccharides (LPS) by releasing pro-inflammatory cytokines. Peripheral blood mononuclear cells (PBMCs) are used to assess changes in cytokines released in response to diseases or pathogens. This study aimed to assess TLR4 gene expression in PBMCs from Leghorn chicken and the release of related cytokines. Materials and Methods: Peripheral blood mononuclear cells were isolated from blood samples obtained from Leghorn chicks. The PBMC cultures were stimulated with various concentrations of LPS (0.01-1 µg/ml). Polymerase chain reaction was used to detect TLR4 expression. The production of tumor necrosis factor-alpha (TNF-α) and interleukins (IL-1ß and IL-6) was quantified using an enzyme-linked immunosorbent assay. Results: We found that TLR4 was expressed in both non-stimulated and stimulated Leghorn chicken PBMCs. In addition, the release of TNF-α, IL-1ß, and IL-6 levels in Leghorn chicken PBMCs increased significantly with an increase in LPS concentration (0.01-1 µg/mL) (p < 0.05). Conclusion: Although TLR4 was expressed in both non-stimulated and stimulated Leghorn chicken PBMCs, its expression was significantly higher in LPS-stimulated PBMCs Therefore, the chicken's endotoxin response can be assessed by evaluating the pro-inflammatory cytokine production from PBMCs.

3.
Vet World ; 16(5): 1018-1028, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37576760

RESUMO

Background and Aim: Fungal zoonoses are an economic and public health concern because they can cause various degrees of morbidity and mortality in animals and humans. To combat this issue, alternative natural antifungals, such as products derived from rice protein hydrolysates or rice antifungal protein/peptide are being considered because they are highly bioactive and exhibit various functional properties. Thailand is a leading rice producer and exporter. Among the various cultivated rice varieties, Sangyod rice (Oryza sativa L.) is exclusively indigenous to Thailand's Phatthalung province; it has a Thai geographical indication tag. Here, we investigated whether the Phatthalung Sangyod rice seeds have bioactive antifungal peptides. Materials and Methods: Antifungal activity in four Sangyod rice seed extracts (SYPs) - namely, (1) the crude lysate, SYP1; (2) the heat-treated lysate, SYP2; (3) the heat- and pepsin digested lysate, SYP3; and (4) the heat- and proteinase K-digested lysate, SYP4 - was analyzed. Protein concentrations in these SYPs were determined using the Bradford assay. The total phenolic compound content was determined using the modified Folin-Ciocalteu method in a 96-well microplate. Then, the SYP protein pattern was determined using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Subsequently, using the agar well diffusion method, the antifungal properties of these SYPs were tested against ten medically important pathogenic fungi. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration values were determined for the active SYPs - SYP2-4. Finally, the clinical safety of SYP4 was determined using a hemolytic assay (using canine red blood cells [RBCs]). Results: The crude lysate SYP1 did not show antifungal activity against any of the ten tested pathogenic fungi. Surprisingly, hydrolysates SYP2, SYP3, and SYP4 displayed antifungal properties against the ten tested pathogenic fungi. Thus, heat and enzymatic hydrolysis seem to transform the bioactivity of the crude protein extract - SYP1. Further, SYP4 shows the most effective antifungal activity. It completely inhibited Cryptococcus neoformans, Talaromyces marneffei yeast phase, Trichophyton mentagrophytes, and Trichophyton rubrum. A partial inhibitory action on Candida albicans and Microsporum gypseum was possessed while showing the least activity to C. neoformans. SYP4 was nontoxic to canine RBCs. Hemolysis of canine RBCs was undetectable at 1 × MIC and 2 × MIC concentrations; therefore, it can be safely used in further applications. Conclusion: These results indicate that heat and proteinase K hydrolyzed SYP is a very potent antifungal preparation against animal and human fungal pathogens and it can be used in future pharmaceuticals and functional foods.

4.
Vet World ; 16(5): 1131-1140, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37576777

RESUMO

Background and Aim: Probiotics are beneficial microorganisms for humans and animals. In this study, we developed a microencapsulated probiotic with antibacterial activity against avian pathogenic Escherichia coli (APEC). Materials and Methods: Alignment of the 16S rRNA sequences of the isolate WU222001 with those deposited in GenBank revealed that the isolate was Pediococcus acidilactici with 99.6% homology. This bacterium was characterized as a probiotic based on its tolerance toward in vitro gastrointestinal tract (GIT) conditions, hydrophobicity, and auto-aggregation. The antibacterial activity of the probiotic's culture supernatant against APEC was investigated using a broth microdilution assay. Pediococcus acidilactici was microencapsulated using sodium alginate and agar with diameters ranging from 47 to 61 µm. Then, physicochemical characteristics and stability of the microcapsules were determined. Results: The isolate was characterized as a probiotic based on its resistance to low pH, bile salts, and pancreatin, with relative values of 79.2%, 70.95%, and 90.64%, respectively. Furthermore, the bacterium exhibited 79.56% auto-aggregation and 55.25% hydrophobicity at 24 h. The probiotic's culture supernatant exhibited strong antibacterial activity against clinical APEC isolates with minimum inhibitory concentration and minimum bactericidal concentration of 12.5% and 25% v/v, respectively. Microencapsulation-enhanced bacterial viability in GIT compared to free cells. Moreover, 89.65% of the encapsulated cells were released into the simulated intestinal fluid within 4 h. The viable count in microcapsules was 63.19% after 3 months of storage at 4°C. Conclusion: The results indicated that the culture supernatant of P. acidilactici inhibited the growth of APEC. In addition, microencapsulation extends the viability of P. acidilactici under harsh conditions, indicating its potential application in the feed production.

5.
Vet World ; 15(10): 2391-2398, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36425129

RESUMO

Background and Aim: Bacillus cereus and Staphylococcus aureus cause foodborne intoxication in humans and animals. Pathogens can produce biofilms controlled by the quorum sensing system. The study aimed to investigate the antibacterial, antibiofilm, and anti-quorum sensing activities of Coffea canephora P. ex Fr. (Robusta coffee) extracts against B. cereus and S. aureus. Materials and Methods: Ethanol extracts of fruit peels and seeds of Robusta coffee were tested for antibacterial activity against B. cereus and S. aureus using a broth microdilution assay. Reduction of the biofilm formation and elimination of the viability of mature biofilm-grown cells of B. cereus and S. aureus were determined. Inhibition of quorum sensing activity in Chromobacterium violaceum by the extracts was investigated using the disk diffusion method and flask incubation assay. Results: Fresh fruit peel extract showed the strongest antibacterial activity against B. cereus and S. aureus with minimum inhibitory concentration (MIC) values of 2 and 4 mg/mL, respectively. However, the extracts did not inhibit Escherichia coli, avian pathogenic E. coli, and Pseudomonas aeruginosa at 8 mg/mL. Significant inhibition of biofilm formation at 1/2 × MIC of the fresh peel extract was detected in B. cereus (56.37%) and S. aureus (39.69 %), respectively. At 8 × MIC of the fresh peel extract, a significant elimination of the mature biofilm viability was detected in B. cereus (92.48%) and S. aureus (74.49%), respectively. The results showed that fresh and dried peel fruit extracts at 1/2 × MIC significantly reduced violacein production with the highest percentage inhibition ranging from 44.53 to 47.48% at 24 h (p ≤ 0.05). Conclusion: The results of the present study suggest the potential therapeutic benefits of Robusta coffee extracts in inhibiting the growth, biofilm, and quorum sensing of both B. cereus and S. aureus. The results put forward an alternative strategy to control the foodborne intoxications caused by both pathogens.

6.
J Fungi (Basel) ; 7(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34682218

RESUMO

Talaromyces marneffei is a dimorphic pathogenic fungus causing opportunistic infection in immunocompromised patients. It is a facultative intracellular pathogen and is usually found inside the host macrophages during infection. Alternative carbons and iron are the important nutrients associated with intracellular survival and pathogenesis of T. marneffei. This study reported the importance of the transcription factor AcuK in control of gluconeogenesis and iron acquisition in T. marneffei. Deletion of acuK gene in T. marneffei resulted in retardation of growth and germination in both mold and yeast phases. Microscopically, ΔacuK showed double nuclei hyphae. However, the yeast cells showed normal morphology. The ΔacuK failed to grow in iron-limiting conditions. Additionally, it could not grow in a medium containing gluconeogenic carbon sources. Moreover, ΔacuK showed higher susceptibility to macrophage killing than the wild type. These results demonstrated that AcuK controlled both iron acquisition and gluconeogenesis, and it could contribute to the pathogenicity of this fungus.

7.
J Fungi (Basel) ; 6(4)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287246

RESUMO

Antifungal proteins (AFPs) are able to inhibit a wide spectrum of fungi without significant toxicity to the hosts. This study examined the antifungal activity of AFPs isolated from a Thai medicinal plant, Rhinacanthus nasutus, against the human pathogenic fungus Talaromycesmarneffei. This dimorphic fungus causes systemic infections in immunocompromised individuals and is endemic in Southeast Asian countries. The R. nasutus crude protein extract inhibited the growth of T. marneffei. The anti-T. marneffei activity was completely lost when treated with proteinase K and pepsin, indicating that the antifungal activity was dependent on a protein component. The total protein extract from R. nasutus was partially purified by size fractionation to ≤10, 10-30, and ≥30 kDa fractions and tested for the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). All fractions showed anti-T. marneffei activity with the MIC and MFC values of 32 to 128 µg/mL and >128 µg/mL, respectively. In order to determine the mechanism of inhibition, all fractions were tested with T. marneffei mutant strains affected in G-protein signaling and cell wall integrity pathways. The anti-T. marneffei activity of the 10-30 kDa fraction was abrogated by deletion of gasA and gasC, the genes encoding alpha subunits of heterotrimeric G-proteins, indicating that the inhibitory effect is related to intracellular signaling through G-proteins. The work demonstrates that antifungal proteins isolated from R. nasutus represent sources for novel drug development.

8.
J Fungi (Basel) ; 6(3)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650460

RESUMO

Talaromyces marneffei is an opportunistic, dimorphic fungal pathogen that causes a disseminated infection in people with a weakened immunological status. The ability of this fungus to acquire nutrients inside the harsh environment of the macrophage phagosome is presumed to contribute to its pathogenicity. The transcription factors AcuM and AcuK are known to regulate gluconeogenesis and iron acquisition in Aspergillus fumigatus. This study demonstrated that they are also involved in both of these processes in the dimorphic fungus T. marneffei. Expression of acuM and acuK genes was determined by real time-polymerase chain reaction (RT-PCR) on the cells grown in media containing gluconeogenic substrates and various iron concentrations. We found that the acuM and acuK transcript levels were sequentially reduced when growing the fungus in increasing amounts of iron. The acuM transcript was upregulated in the gluconeogenic condition, while the acuK transcript showed upregulation only in the acetate medium in the yeast phase. These results suggest the involvement of acuM and acuK in gluconeogenesis and iron homeostasis in T. marneffei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...