Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069208

RESUMO

Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.


Assuntos
Células-Tronco Mesenquimais , Hidrocarbonetos Policíclicos Aromáticos , Receptores Odorantes , Animais , Camundongos , Medula Óssea/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigênio , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Espécies Reativas de Oxigênio , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230892

RESUMO

Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.


Assuntos
Hepcidinas , Hidrocarbonetos Policíclicos Aromáticos , Acetilcisteína/metabolismo , Antioxidantes/metabolismo , Ácido Araquidônico , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/metabolismo , Estradiol , Estrogênios , Heme/metabolismo , Hepcidinas/metabolismo , Homeostase , Ferro , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Malha Trabecular/metabolismo
3.
Mol Cell Endocrinol ; 531: 111265, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864885

RESUMO

STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Células Intersticiais do Testículo/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Processamento Alternativo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Masculino , Fosfoproteínas/química , Domínios Proteicos , Transdução de Sinais , Imagem Individual de Molécula
4.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784378

RESUMO

Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.


Assuntos
Androgênios/biossíntese , Colesterol/fisiologia , Proteínas Hedgehog/metabolismo , Diferenciação Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Colesterol/biossíntese , Transtornos do Desenvolvimento Sexual , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Humanos , Células Intersticiais do Testículo/fisiologia , Masculino , Testículo/embriologia , Testículo/metabolismo
5.
Front Endocrinol (Lausanne) ; 11: 559674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193082

RESUMO

STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.


Assuntos
HDL-Colesterol/metabolismo , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Fosfoproteínas/metabolismo , Splicing de RNA/fisiologia , RNA Mensageiro/biossíntese , Animais , Colesterol/genética , Colesterol/metabolismo , HDL-Colesterol/genética , Expressão Gênica , Humanos , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Fosfoproteínas/genética , RNA Mensageiro/genética
6.
Toxicol Appl Pharmacol ; 401: 115111, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553695

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines. MSC, enriched from adherent BM cells, yielded the bone marrow stromal, BMS2, cell line. These cells express elevated basal CYP1B1 that scarcely responds to Ah receptor (AhR) inducers. BMS2 cells exhibit extensive transcriptome overlap with leptin receptor positive mesenchymal stem cells (Lepr+ MSC) that control the hematopoietic niche. The overlap includes CYP1B1 and the expression of HSPC regulatory factors (Ebf3, Cxcl12, Kitl, Csf1 and Gas6). MSC are large, adherent fibroblasts that sequester small HSPC and macrophage in the BM niche (Graphic abstract). High basal CYP1B1 expression in BMS2 cells derives from interactions between the Ah-receptor enhancer and proximal promoter SP1 complexes, boosted by autocrine signaling. PAH effects on BMS2 cells model Lepr+MSC niche activity. CYP1B1 metabolizes DMBA to PAHDE, producing p53-mediated mRNA increases, long after the in vivo HSPC suppression. Faster, direct p53 effects, favored by stem cells, remain possible PAHDE targets. However, HSPC regulatory factors remained unresponsive. BP is less toxic in BMS2 cells, but, in BM, CYP1A1 metabolism stimulates macrophage cytokines (Il1b > Tnfa> Ifng) within 6 h. Although absent from BMS2 and Lepr+MSC, their receptors are highly expressed. The impact of this cytokine signaling in MSC remains to be determined.


Assuntos
Células da Medula Óssea/metabolismo , Citocromo P-450 CYP1B1/biossíntese , Regulação Enzimológica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células CHO , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Cricetinae , Cricetulus , Citocromo P-450 CYP1B1/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
7.
PLoS One ; 15(2): e0228436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027669

RESUMO

BACKGROUND: Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. HYPOTHESIS: Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. APPROACH: Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. RESULTS: At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with ß-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. CONCLUSION: Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.


Assuntos
Colesterol/biossíntese , Citocromo P-450 CYP1B1/fisiologia , Desenvolvimento Fetal , Fígado/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Tretinoína/metabolismo , Animais , Animais Recém-Nascidos , Citocromo P-450 CYP1B1/genética , Embrião de Mamíferos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Fetal/genética , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Tretinoína/farmacologia
8.
Lab Chip ; 20(1): 107-119, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31712791

RESUMO

Open microfluidic cell culture systems are powerful tools for interrogating biological mechanisms. We have previously presented a microscale cell culture system, based on spontaneous capillary flow of biocompatible hydrogels, that is integrated into a standard cell culture well plate, with flexible cell compartment geometries and easy pipet access. Here, we present two new injection molded open microfluidic devices that also easily insert into standard cell culture well plates and standard culture workflows, allowing seamless adoption by biomedical researchers. These platforms allow culture and study of soluble factor communication among multiple cell types, and the microscale dimensions are well-suited for rare primary cells. Unique advances include optimized evaporation control within the well, manufacture with reproducible and cost-effective rapid injection molding, and compatibility with sample preparation workflows for high resolution microscopy (following well-established coverslip mounting procedures). In this work, we present several use cases that highlight the usability and widespread utility of our platform including culture of limited primary testis cells from surgical patients, microscopy readouts including immunocytochemistry and single molecule fluorescence in situ hybridization (smFISH), and coculture to study interactions between adipocytes and prostate cancer cells.


Assuntos
Dispositivos Lab-On-A-Chip , Testículo/citologia , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino
9.
mBio ; 10(3)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138742

RESUMO

Soil-dwelling fungal species possess the versatile metabolic capability to degrade complex organic compounds that are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcinogenic contaminant, posing a significant concern for human health. Here, we report that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus nidulans cells to BaP results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes BaP as a growth substrate. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that is necessary for the metabolic utilization of BaP in Aspergillus We further demonstrate that the fungal NF-κB-type velvet regulators VeA and VelB are required for proper expression of bapA in response to nutrient limitation and BaP degradation in A. nidulans Our study illuminates fundamental knowledge of fungal BaP metabolism and provides novel insights into enhancing bioremediation potential.IMPORTANCE We are increasingly exposed to environmental pollutants, including the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into human metabolism of toxicants. However, little is known about metabolic mechanisms employed by fungi that are able to use some toxic pollutants as the substrates for growth, leaving innocuous by-products. This study systemically demonstrates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food, which results in expression and metabolic changes associated with growth and energy generation. Importantly, this study reveals key components of the metabolic utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-κB-type transcriptional regulators. Our study advances fundamental knowledge of fungal BaP metabolism and provides novel insight into designing and implementing enhanced bioremediation strategies.


Assuntos
Aspergillus/enzimologia , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/metabolismo , Aspergillus/genética , Sistema Enzimático do Citocromo P-450/genética , NF-kappa B/genética , Microbiologia do Solo
10.
Trends Dev Biol ; 12: 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32255961

RESUMO

Mutations in cytochrome P450 1B1 (CYP1B1) gene are reported in patients with primary congenital glaucoma. Cyp1b1-deficient (Cyp1b1-/-) mice show dysgenesis of the trabecular meshwork (TM) tissue and attenuation of retinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Although retinal vascular cells, including endothelial cells (EC), pericytes (PC), astrocytes (AC), and TM endothelial cells express CYP1B1, the cell autonomous contribution of CYP1B1 to attenuation of retinal neovascularization and TM tissue dysgenesis remains unknown. Here we determined the impact lack of CYP1B1 expression in EC, PC or AC has on retinal neovascularization and TM tissue integrity. We generated Cyp1b1-transgenic mice with vascular cell-specific targeted Cre+-deletion in EC (Cyp1b1 EC), in PC (Cyp1b1 PC) and in AC (Cyp1b1 AC). Pathologic retinal neovascularization during OIR was evaluated by collagen IV staining of retinal wholemounts. Structural morphology of TM tissue was examined by transmission electron microscopy (TEM). The assessment of retinal neovascularization indicated a significant decrease in retinal neovascular tufts only in Cyp1b1 PC mice compared with control mice. TEM evaluation demonstrated Cyp1b1 PC mice also exhibited a defect in TM tissue morphology and integrity similar to that reported in Cyp1b1-/- mice. Thus, Cyp1b1 expression in PC plays a significant role in retinal neovascularization and the integrity of TM tissue.

11.
Toxicol Sci ; 165(2): 462-474, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939353

RESUMO

Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.


Assuntos
Lesão Pulmonar Aguda/etiologia , Citocromo P-450 CYP1B1/genética , Dano ao DNA , Hiperóxia/complicações , Estresse Oxidativo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Hiperóxia/enzimologia , Hiperóxia/patologia , Peroxidação de Lipídeos/genética , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/genética
12.
J Mol Endocrinol ; 60(4): R213-R235, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29691317

RESUMO

Cholesterol is an important regulator of cell signaling, both through direct impacts on cell membranes and through oxy-metabolites that activate specific receptors (steroids, hydroxy-cholesterols, bile acids). Cholesterol moves slowly through and between cell membranes with the assistance of specific binding proteins and transfer processes. The prototype cholesterol regulator is the Steroidogenesis Acute Regulatory (STAR), which moves cholesterol into mitochondria, where steroid synthesis is initiated by cytochrome P450 11A1 in multiple endocrine cell types. CYP27A1 generates hydroxyl cholesterol metabolites that activate LXR nuclear receptors to control cholesterol homeostatic and transport mechanisms. LXR regulation of cholesterol transport and storage as cholesterol ester droplets is shared by both steroid-producing cells and macrophage. This cholesterol signaling is crucial to brain neuron regulation by astrocytes and microglial macrophage, mediated by ApoE and sensitive to disruption by ß-amyloid plaques. sm-FISH delivers appreciable insights into signaling in single cells, by resolving single RNA molecules as mRNA and by quantifying pre-mRNA at gene loci. sm-FISH has been applied to problems in physiology, embryo development and cancer biology, where single cell features have critical impacts. sm-FISH identifies novel features of STAR transcription in adrenal and testis cells, including asymmetric expression at individual gene loci, delayed splicing and 1:1 association of mRNA with mitochondria. This may represent a functional unit for the translation-dependent cholesterol transfer directed by STAR, which integrates into mitochondrial fusion dynamics. Similar cholesterol dynamics repeat with different players in the cycling of cholesterol between astrocytes and neurons in the brain, which may be abnormal in neurodegenerative diseases.


Assuntos
Células/metabolismo , Colesterol/metabolismo , Hibridização in Situ Fluorescente , Fosfoproteínas/metabolismo , Transdução de Sinais , Animais , Humanos , Fosfoproteínas/genética , Splicing de RNA/genética
13.
J Biol Chem ; 293(6): 1994-2005, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279331

RESUMO

Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist.


Assuntos
Cinurenina/química , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Sítios de Ligação , Cinética , Ligantes , Camundongos , Estrutura Molecular , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-29118738

RESUMO

Recent advances in fluorescence microscopy, coupled with CRISPR/Cas9 gene editing technology, provide opportunities for understanding gene regulation at the single-cell level. The application of direct imaging shown here provides an in situ side-by-side comparison of CRISPR/Cas9-edited cells and adjacent unedited cells. We apply this methodology to the steroidogenic acute regulatory protein (StAR) gene in Y-1 adrenal cells and MA-10 testis cells. StAR is a gatekeeper protein that controls the access of cholesterol from the cytoplasm to the inner mitochondria. The loss of this mitochondrial cholesterol transfer mediator rapidly increases lipid droplets in cells, as seen in StAR-/- mice. Here, we describe a dual CRISPR/Cas9 strategy marked by GFP/mCherry expression that deletes StAR activity within 12 h. We used single-molecule fluorescence in situ hybridization (sm-FISH) imaging to directly monitor the time course of gene editing in single cells. We achieved StAR gene deletion at high efficiency dual gRNA targeting to the proximal promoter and exon 2. Seventy percent of transfected cells showed a slow DNA deletion as measured by PCR, and loss of Br-cAMP stimulated transcription. This DNA deletion was seen by sm-FISH in both loci of individual cells relative to non-target Cyp11a1 and StAR exon 7. sm-FISH also distinguishes two effects on stimulated StAR expression without this deletion. Br-cAMP stimulation of primary and spliced StAR RNA at the gene loci were removed within 4 h in this dual CRISPR/Cas9 strategy before any effect on cytoplasmic mRNA and protein occurred. StAR mRNA disappeared between 12 and 24 h in parallel with this deletion, while cholesterol ester droplets increased fourfold. These alternative changes match distinct StAR expression processes. This dual gRNA and sm-FISH approach to CRISPR/Cas9 editing facilitates rapid testing of editing strategies and immediate assessment of single-cell adaptation responses without the perturbation of clonal expansion procedures.

15.
Mol Cell Endocrinol ; 454: 50-68, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28583802

RESUMO

Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1-/- pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. CONCLUSIONS: The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1-/- and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1-/- mice link to diminished adult obesity and liver inflammation.


Assuntos
Citocromo P-450 CYP1B1/deficiência , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hepcidinas/genética , Lipogênese/genética , Fígado/metabolismo , Deficiência de Vitamina A/genética , Vitamina A/metabolismo , Adiposidade/efeitos dos fármacos , Envelhecimento , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Dieta , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Ésteres/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Ferro/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/patologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Desmame , alfa-Fetoproteínas/metabolismo
16.
J Nutr Biochem ; 47: 63-74, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28570941

RESUMO

For mice, a maternal vitamin A (VA)-deficient diet initiated from midgestation (GVAD) produces serum retinol deficiency in mature offspring. We hypothesize that the effects of GVAD arise from preweaning developmental changes. We compare the effect of this GVAD protocol in combination with a postweaning high-fat diet (HFD) or high-carbohydrate diet (LF12). Each is compared to an equivalent VA-sufficient combination. GVAD extensively decreased serum retinol and liver retinol, retinyl esters, and retinoid homeostasis genes (Lrat, Cyp26b1 and Cyp26a1). These suppressions were each more effective with LF12 than with HFD. Postweaning initiation of VA deficiency with LF12 depleted liver retinoids, but serum retinol was unaffected. Liver retinoid depletion, therefore, precedes serum attenuation. Maternal LF12 decreased the obesity response to the HFD, which was further decreased by GVAD. LF12 fed to the mother and offspring extensively stimulated genes marking stellate activation (Col1a1, Timp2 and Cyp1b1) and novel inflammation markers (Ly6d, Trem2 and Nupr1). The GVAD with LF12 diet combination suppressed these responses. GVAD in combination with the HFD increased these same clusters. A further set of expression differences on the HFD when compared to a high-carbohydrate diet was prevented when GVAD was combined with HFD. Most of these GVAD gene changes match published effects from deletion of Nr0b2/Shp, a retinoid-responsive, nuclear co-repressor that modulates metabolic homeostasis. The stellate and inflammatory increases seen with the high-carbohydrate LF12 diet may represent postprandial responses. They depend on retinol and Shp, but the regulation reverses with an HFD.


Assuntos
Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Mediadores da Inflamação/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Receptores Citoplasmáticos e Nucleares/metabolismo , Retinoides/metabolismo , Deficiência de Vitamina A/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Feminino , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/patologia , Mediadores da Inflamação/sangue , Lactação , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Gravidez , Receptores Citoplasmáticos e Nucleares/genética , Retinoides/sangue , Índice de Gravidade de Doença , Deficiência de Vitamina A/imunologia , Deficiência de Vitamina A/patologia , Deficiência de Vitamina A/fisiopatologia , Desmame
17.
Mol Cell Endocrinol ; 441: 22-30, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-27521960

RESUMO

The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kB mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kB StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress.


Assuntos
Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Fosfoproteínas/metabolismo , Análise de Célula Única/métodos , Animais , Colesterol/metabolismo , Humanos , Mitocôndrias/metabolismo , Fosfoproteínas/genética , Transcrição Gênica
18.
Stem Cells Int ; 2016: 1753491, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891153

RESUMO

7,12-Dimethylbenz(a)anthracene (DMBA) rapidly suppresses hematopoietic progenitors, measured as colony forming units (CFU), in mouse bone marrow (BM) leading to mature cell losses as replenishment fails. These losses are mediated by Cyp1b1, independent of the AhR, despite induction of Cyp1b1. BM mesenchymal progenitor cells (MPC) may mediate these responses since basal Cyp1b1 is minimally induced. PreB colony forming unit activity (PreB CFU) is lost within 24 hours in isolated BM cells (BMC) unless cocultured with cells derived from primary MPC (BMS2 line). The mouse embryonic OP9 line, which provides more efficient coculture support, shares similar induction-resistant Cyp1b1 characteristics. This OP9 support is suppressed by DMBA, which is then prevented by Cyp1b1 inhibitors. OP9-enriched medium partially sustains CFU activities but loses DMBA-mediated suppression, consistent with mediation by OP9 Cyp1b1. PreB CFU activity in BMC from Cyp1b1-ko mice has enhanced sensitivity to DMBA. BMC gene expression profiles identified cytokines and developmental factors that are substantially changed in Cyp1b1-ko mice. DMBA had few effects in WT mice but systematically modified many clustered responses in Cyp1b1-ko mice. Typical BMC AhR-responsive genes were insensitive to Cyp1b1 deletion. TCDD replicated Cyp1b1 interventions, suggesting alternative AhR mediation. Cyp1b1 also diminishes oxidative stress, a key cause of stem cell instability.

19.
Artigo em Inglês | MEDLINE | ID: mdl-27531991

RESUMO

The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3'- and 5'-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles.

20.
Nucleic Acids Res ; 44(20): 9667-9680, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27431323

RESUMO

cAMP response element binding protein (CREB) is a key regulator of glucose metabolism and synaptic plasticity that is canonically regulated through recruitment of transcriptional coactivators. Here we show that phosphorylation of CREB on a conserved cluster of Ser residues (the ATM/CK cluster) by the DNA damage-activated protein kinase ataxia-telangiectasia-mutated (ATM) and casein kinase1 (CK1) and casein kinase2 (CK2) positively and negatively regulates CREB-mediated transcription in a signal dependent manner. In response to genotoxic stress, phosphorylation of the ATM/CK cluster inhibited CREB-mediated gene expression, DNA binding activity and chromatin occupancy proportional to the number of modified Ser residues. Paradoxically, substoichiometric, ATM-independent, phosphorylation of the ATM/CK cluster potentiated bursts in CREB-mediated transcription by promoting recruitment of the CREB coactivator, cAMP-regulated transcriptional coactivators (CRTC2). Livers from mice expressing a non-phosphorylatable CREB allele failed to attenuate gluconeogenic genes in response to DNA damage or fully activate the same genes in response to glucagon. We propose that phosphorylation-dependent regulation of DNA binding activity evolved as a tunable mechanism to control CREB transcriptional output and promote metabolic homeostasis in response to rapidly changing environmental conditions.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dano ao DNA , DNA/genética , DNA/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Gluconeogênese/genética , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...