Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3478, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837553

RESUMO

If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use "magic number theory." In contrast with counting rules and "curly-arrow" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores. Here we address the question of how conductance ratios are affected by electron-electron interactions. We find that due to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance ratios of molecules with extended pi systems can be predicted using simple 'non-interacting' magic number tables, without the need for large-scale computations. On the other hand, for certain connectivities, deviations from non-interacting conductance ratios can be significant and therefore such connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and QI in single-molecule electron transport.

2.
Phys Rev Lett ; 105(8): 080502, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868084

RESUMO

We exploit the nondissipative dynamics of a pair of electrons in a large square quantum dot to perform singlet-triplet spin measurement through a single charge detection and show how this may be used for entanglement swapping and teleportation. The method is also used to generate the Affleck-Kennedy-Lieb-Tasaki ground state, a further resource for quantum computation. We justify, and derive analytic results for, an effective charge-spin Hamiltonian which is valid over a wide range of parameters and agrees well with exact numerical results of a realistic effective-mass model. Our analysis also indicates that the method is robust to the choice of dot-size and initialization errors, as well as decoherence.

3.
ACS Nano ; 3(5): 1069-76, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19351146

RESUMO

Sc@C(82) peapods, which form encapsulated spin-1/2 antiferromagnetic chains under doping with electrons or holes are investigated using hybrid density functional theory. The narrow fullerene bands become shifted relative to nanotube bands resulting in charge transfer and conducting channels along both the fullerene chain and the nanotube. This is accompanied by a reduction in the magnetic moments on the fullerenes, consistent with a 1D Hubbard-Anderson model description.


Assuntos
Fulerenos/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Condutividade Elétrica , Tamanho da Partícula
4.
J Phys Condens Matter ; 21(7): 075503, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21817330

RESUMO

A theoretical scheme is presented for the entanglement of two-electron spin qubits bound in series within a quasi-one-dimensional mesoscopic structure at a distance beyond their normal range of interaction. A third electron is scattered from them, and full entanglement is achieved upon measurement of a transmitted electron in the correct spin state. Critically, each bound electron is trapped within an individual structure that has at least two spatial states. Two simple examples of such structures are discussed here. One is a 'stub', in which a quantum dot (for example) is coupled to one side of the quasi-one-dimensional structure. The other is a pair of degenerate, coupled quantum dots, with strong interdot Coulomb repulsion, placed within the one-dimensional superstructure. Both of these are shown to allow generation of entanglement with a significant probability of success. In contrast to the results of the authors' previous works, this allows for the generation of entanglement in a series, rather than in a parallel, configuration of the bound electrons with respect to the propagating electron.

5.
Nano Lett ; 8(4): 1005-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311933

RESUMO

We filled SWNTs with the paramagnetic fullerene Sc@C82 to form peapods. The interfullerene 1D packing distance measured using TEM is d = 1.1 +/- 0.02 nm. The Sc@C82 in SWNT peapods continuously rotated during the 2 s TEM exposure time, and we did not see the Sc atoms. However, Sc@C82 metallofullerenes in MWNT peapods have periods of fixed orientation, indicated by the brief observation of Sc atoms. La@C82 peapods were also prepared and their rotational behavior examined. The interfullerene 1D packing of both La@C82 and Sc@C82 peapods is identical and thus independent of the charge transfer state for these paramagnetic fullerenes. The La@C82 metallofullerenes in the peapods have fixed orientations for extended periods of time, up to 50 s in some cases. The La@C82 spontaneously rotates rapidly between fixed orientations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...