Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 10(1): 83-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27615792

RESUMO

BACKGROUND: The mechanisms mediating the efficacy and variability of paired associative stimulation (PAS), thought to be mediated by Hebbian plasticity, remain incompletely understood. The magnitude and direction of Hebbian plasticity may be modulated by the level of neural depolarisation, which is influenced by stimulation intensity and interactions with cortical circuits. HYPOTHESIS: PAS effects would be influenced by the intensity of transcranial magnetic stimulation (TMS) and interaction with other circuits. In particular, PAS would be inhibited by concurrent inhibitory input following median nerve stimulation, known as short latency afferent inhibition (SAI). METHODS: PAS was tested at an interstimulus interval (ISI) 2 ms or 6 ms longer than the N20 peak of the median nerve somatosensory-evoked potential (PASN20+2, PASN20+6). PASN20+2 was tested at three different TMS intensities. Short interval intracortical facilitation and inhibition were tested in the presence of SAI (SICFSAI, SICISAI). RESULTS: The propensity for long term potentiation like effects increased with higher PASN20+2 TMS stimulus intensity, whereas long term depression like effects ensued at subthreshold intensity. Stronger SAI correlated with weaker PAS LTP-like effects across individuals. PASN20+2 (maximal SAI) was less effective than PASN20+6 (weak SAI). SICFSAI or SICISAI did not influence PAS response. CONCLUSION: Inter-individual differences in SAI contribute to the variability in PAS efficacy. The magnitude and direction of PAS effects is modulated by TMS intensity. Together, these findings indicate that the level of neural activity induced by stimulation likely plays a crucial role in determining the direction and magnitude of Hebbian plastic effects evoked by PAS in human cortex.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Individualidade , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Nervo Mediano/fisiologia , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...