Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(1): 406-417, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205022

RESUMO

The oxygen species on Ag catalysts and reaction mechanisms for ethylene epoxidation and ethylene combustion continue to be debated in the literature despite decades of investigation. Fundamental details of ethylene oxidation by supported Ag/α-Al2O3 catalysts were revealed with the application of high-angle annular dark-field-scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS), in situ techniques (Raman, UV-vis, X-ray diffraction (XRD), HS-LEIS), chemical probes (C2H4-TPSR and C2H4 + O2-TPSR), and steady-state ethylene oxidation and SSITKA (16O2 → 18O2 switch) studies. The Ag nanoparticles are found to carry a considerable amount of oxygen after the reaction. Density functional theory (DFT) calculations indicate the oxidative reconstructed p(4 × 4)-O-Ag(111) surface is stable relative to metallic Ag(111) under the relevant reaction environment. Multiple configurations of reactive oxygen species are present, and their relevant concentrations depend on treatment conditions. Selective ethylene oxidation to EO proceeds with surface Ag4-O2* species (dioxygen species occupying an oxygen site on a p(4 × 4)-O-Ag(111) surface) only present after strong oxidation of Ag. These experimental findings are strongly supported by the associated DFT calculations. Ethylene epoxidation proceeds via a Langmuir-Hinshelwood mechanism, and ethylene combustion proceeds via combined Langmuir-Hinshelwood (predominant) and Mars-van Krevelen (minor) mechanisms.

2.
Science ; 348(6235): 686-90, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25858978

RESUMO

Direct methane conversion into aromatic hydrocarbons over catalysts with molybdenum (Mo) nanostructures supported on shape-selective zeolites is a promising technology for natural gas liquefaction. We determined the identity and anchoring sites of the initial Mo structures in such catalysts as isolated oxide species with a single Mo atom on aluminum sites in the zeolite framework and on silicon sites on the zeolite external surface. During the reaction, the initial isolated Mo oxide species agglomerate and convert into carbided Mo nanoparticles. This process is reversible, and the initial isolated Mo oxide species can be restored by a treatment with gas-phase oxygen. Furthermore, the distribution of the Mo nanostructures can be controlled and catalytic performance can be fully restored, even enhanced, by adjusting the oxygen treatment.

3.
J Nanosci Nanotechnol ; 8(5): 2671-5, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572705

RESUMO

The polyimide/multi-walled carbon nanotubes (PI/MWNTs) nanocomposite film has been successfully synthesized in this study. The source of MWNTs is prepared by chemical vapor deposition (CVD) method. Then the MWNTs are washed with acid for purification before being added into the polymer matrix. The acid-modified procedure aids in dispersing MWNTs in N,N-dimethylacetamide (DMAc) solvent. Based on the results of field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), the MWNTs are embedded in PI and well-dispersed within the PI matrix. The dynamic mechanical analysis (DMA) shows that the storage modulus of nanocomposite film is increased by 68% with the addition of 1 wt% MWNTs into PI. The nanocomposite films start to decompose at or above 400 degrees C and lose 5% of its weight at 545 degrees C according to thermogravimetric analysis (TGA). Meanwhile, the electrical conductivity of the nanocomposite film with 3 wt% MWNTs, is raised more than 10 orders of magnitude from 10(-15) to 10(-5) S/cm.

4.
J Hazard Mater ; 141(3): 762-8, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16949744

RESUMO

In Taiwan, Japan, and China, methyl ethyl ketone peroxide (MEKPO) has caused many severe thermal explosions owing to its thermal instability and reactivity originating from the complexity of its structure. This study focused on the incompatible features of MEKPO as detected by calorimetry. The thermal decomposition and runaway behaviors of MEKPO with about 10wt.% incompatibilities, such as H(2)SO(4), HCl, NaOH, KOH, FeCl(3), and FeSO(4), were analyzed by dynamic calorimeter, differential scanning calorimetry (DSC) and adiabatic calorimeter, vent sizing package 2 (VSP2). Thermokinetic data, such as onset temperature, heat of decomposition, adiabatic temperature rise, and self-heat rate, were obtained and assessed. Experimental data were used for determining the incompatibility rating on hazards. From the thermal curves of MEKPO with assumed incompatible substances detected by DSC, all the onset temperatures in the other tests occurring earlier advanced, especially with alkaline or ferric materials. In some tests, significant incompatible reactions were found. Adiabatic runaway behaviors for simulating the worst case scenario were performed by using VSP2. These calorimetric data led to the same results that the alkaline or ferric solution was the most incompatible with MEKPO.


Assuntos
Butanonas/química , Substâncias Perigosas , Varredura Diferencial de Calorimetria , Cloretos , Explosões , Compostos Férricos/química , Compostos Ferrosos/química , Temperatura Alta , Ácido Clorídrico/química , Hidróxidos/química , Compostos de Potássio/química , Cloreto de Sódio/química , Hidróxido de Sódio/química , Ácidos Sulfúricos/química
5.
J Phys Chem B ; 109(6): 2275-84, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851220

RESUMO

CH3OH temperature programmed surface reaction (TPSR) spectroscopy was employed to determine the chemical nature of active surface sites for bulk mixed metal oxide catalysts. The CH3OH-TPSR spectra peak temperature, Tp, for model supported metal oxides and bulk, pure metal oxides was found to be sensitive to the specific surface metal oxide as well as its oxidation state. The catalytic activity of the surface metal oxide sites was found to decrease upon reduction of these sites and the most active surface sites were the fully oxidized surface cations. The surface V5+ sites were found to be more active than the surface Mo6+ sites, which in turn were significantly more active than the surface Nb5+ and Te4+ sites. Furthermore, the reaction products formed also reflected the chemical nature of surface active sites. Surface redox sites are able to liberate oxygen and yield H2CO, while surface acidic sites are not able to liberate oxygen, contain either H+ or oxygen vacancies, and produce CH3OCH3. Surface V5+, Mo6+, and Te4+ sites behave as redox sites, and surface Nb5+ sites are Lewis acid sites. This experimental information was used to determine the chemical nature of the different surface cations in bulk Mo-V-Te-Nb-Ox mixed oxide catalysts (Mo(0.6)V(1.5)Ox, Mo(1.0)V(0.5)Te(0.16)Ox, Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox). The bulk Mo(0.6)V(1.5)Ox and Mo(1.0)V(0.5)Te(0.16)Ox mixed oxide catalytic characteristics were dominated by the catalytic properties of the surface V5+ redox sites. The surface enrichment of these bulk mixed oxide by surface V5+ is related to its high mobility, V5+ possesses the lowest Tammann temperature among the different oxide cations, and the lower surface free energy associated with the surface termination of V=O bonds. The quaternary bulk Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox mixed oxide possessed both surface redox and acidic sites. The surface redox sites reflect the characteristics of surface V5+ and the surface acidic sites reflect the properties normally associated with supported Mo6+. The major roles of Nb5+ and Te4+ appear to be that of ligand promoters for the more active surface V and Mo sites. These reactivity trends for CH3OH ODH parallel the reactivity trends of propane ODH because of their similar rate-determining step involving cleavage of a C-H bond. This novel CH3OH-TPSR spectroscopic method is a universal method that has also been successfully applied to other bulk mixed metal oxide systems to determine the chemical nature of the active surface sites.

6.
Langmuir ; 20(17): 7159-65, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15301500

RESUMO

The molecular structures, oxidation states, and reactivity of 3 and 6% CrO3/ZrO2 catalysts prepared by incipient wetness impregnation were examined under different conditions. The in situ Raman spectroscopic studies under dehydrated conditions reveal that the 3 and 6% CrO3/ZrO2 catalysts possess equal amounts of monochromate and polychromate species. Consequently, monolayer coverage on this ZrO2 support is about 3% CrO3. The 6% CrO3/ZrO2 possesses an additional Raman band due to Cr2O3 crystals corresponding to the remaining 3% CrO3. Furthermore, during reaction conditions the polychromate species is preferentially reduced, the monochromate species are slightly affected, and the Cr2O3 crystals are not affected. The in situ UV-vis-NIR diffuse reflectance spectroscopy results reveal that under steady-state reaction conditions the extent of reduction and edge energy position of surface Cr6+ cations increase with an increase in reduction environment for the 3 and 6% CrO3/ZrO2 samples. Propane oxidative dehydrogenation (ODH) studies reveal that the catalytic activity expressed in moles of propane converted per gram catalyst per second is similar for the two catalysts, which is consistent with equal amounts of molecularly dispersed chromia present. The turnover frequency for the 6% CrO3/ZrO2 catalyst is, however, smaller than that for the 3% CrO3/ZrO2 sample due to the presence of Cr2O3 crystals, which are relatively inactive for propane ODH. For this catalytic system and for the experimental conditions used, propene, CO, and CO2 are primary products. Furthermore, the 33-39% propene selectivity is not affected by the C3H8/O2 ratio for both catalysts. Structure-reactivity studies suggest that the molecularly dispersed species are present in equal amounts in the 3 and 6% CrO3/ZrO2 samples as Cr6+ monochromate and polychromate species are the most effective catalytic active sites taking part in the propane ODH reaction.

7.
J Hazard Mater ; 90(1): 63-75, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11777593

RESUMO

Trichloroethylene (TCE) has been widely used in industry. It is considered a hazardous and carcinogenic air pollutant. In this investigation, TCE photocatalytic reactions were performed in a packed bed reactor configured as a continuous flow reactor and a FT-IR sample cell used as a batch reactor to determine the intermediates under irradiation by 365 nm UV light. In this study, the intermediates detected during these reactions were phosgene, dichloroacetyl chloride (DCAC), chloroform, hexachloroethane, alcohols, esters, aldehydes, carbon monoxide, and carbon dioxide. The possible reaction mechanisms began with the Cl- subtraction. The Cl radicals then interacted with TCE to form various intermediates and products.


Assuntos
Carcinógenos/química , Solventes/química , Tricloroetileno/química , Catálise , Cloro/química , Gases , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...