Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(24): e2110404, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405768

RESUMO

The development of simple and accurate methods to predict mutations in proteins remains an unsolved challenge in modern biochemistry. It is discovered that critical information about primary and secondary peptide structures can be inferred from the stains left behind by their drying droplets. To analyze the complex stain patterns, deep-learning neuronal networks are challenged with polarized light microscopy images derived from the drying droplet deposits of a range of amyloid beta (1-42) (Aß42 ) peptides. These peptides differ in a single amino acid residue and represent hereditary mutants of Alzheimer's disease. Stain patterns are not only reproducible but also result in comprehensive stratification of eight amyloid beta (Aß) variants with predictive accuracies above 99%. Similarly, peptide stains of a range of distinct Aß42 peptide conformations are identified with accuracies above 99%. The results suggest that a method as simple as drying a droplet of a peptide solution onto a solid surface may serve as an indicator of minute, yet structurally meaningful differences in peptides' primary and secondary structures. Scalable and accurate detection schemes for stratification of conformational and structural protein alterations are critically needed to unravel pathological signatures in many human diseases such as Alzheimer's and Parkinson's disease.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Estrutura Secundária de Proteína
2.
Chemosphere ; 217: 47-58, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30404048

RESUMO

In the context of decentralised brackish water treatment in development applications, the influence of water quality on membrane separation was investigated with real waters. High ionic strength (low net driving pressure) on fluoride (F) retention by nanofiltration (NF) and reverse osmosis (RO) was investigated over a wide pH range (2-12). Further, the influence of pH on the permeation of natural organic matter (NOM) fractions, in particular low molecular weight (LMW) neutrals, was elucidated. Natural and semi-natural waters from Tanzania with similar F concentrations of about 50 mg L-1 but varying NOM and inorganic carbon (IC) concentration were filtered with an NF and RO, namely NF270 and BW30. F retention by NF270 for the feed water with highest ionic strength and IC concentration was lower and attributed to charge screening. This parameter further reduced at high pH due to co-ions (F- and CO32-) interactions and combined (synergistic) effect of high salt concentration and pH on F. High NOM resulted in higher membrane zeta potential in comparison with low NOM natural water. However, there was no significant difference in F retention due to the fact that F retention enhancement was annulled by deposit formation on the membrane. The fraction of NOM found in NF/RO permeates was dominated by LMW neutrals. This was attributed to their size and uncharged nature, while their higher concentration at low pH remains unexplained. More humic substances (HS) of higher molecularity and aromaticity permeated the NF270 when compared with BW30, which can be explained with the different membrane molecular weight cut off (MWCO). The study highlights the complexity of treating tropical natural waters with elevated F and NOM concentrations. In order to develop appropriate membrane systems that will achieve optimal F and NOM removal, the influence of water quality parameters such as pH, NOM content, ionic strength and IC concentration requires understanding. Seasonal variation of water quality as well as operational fluctuations, which occur in particular when such treatment processes are operated with renewable energy, will require such challenges to be addressed. Further, given the high permeability of low molecular weight (LMW) organics significant permeate side fouling may be expected.


Assuntos
Fluoretos/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Purificação da Água/métodos , Substâncias Húmicas/análise , Membranas Artificiais , Peso Molecular , Compostos Orgânicos/química , Águas Salinas/química , Tanzânia , Ultrafiltração , Qualidade da Água
3.
Sci Total Environ ; 637-638: 1209-1220, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801214

RESUMO

The Maji ya Chai River in Northern Tanzania, a fluoride-rich tropical area, shows a seasonal variation of natural organic matter (NOM) and fluoride concentration. Water samples collected monthly during one year from two locations of the River were characterized. High levels of precipitation in the rainy seasons increased the total organic carbon (TOC) concentration to as high as 36 mgC L-1 and diluted the fluoride concentration from a dry season high of 24 mg L-1 to <4 mg L-1. A black water swamp in the Maji ya Chai River catchment was confirmed as the main source of NOM, fluoride, salinity, and inorganic carbon entering the River in the rainy season. The water samples were filtered by a number of nanofiltration/reverse osmosis (NF/RO) membranes to identify the retention mechanisms and the impact of varying water quality on treatability. While the denser membranes removed fluoride due to size exclusion, for the membranes with bigger pore radius charge repulsion was the dominant mechanism of fluoride retention. Regardless of the seasonal conditions a TOC concentration <2 mgC L-1 was achieved by all membranes at 50% recovery, as NF/RO membranes remove TOC mainly by size exclusion. Two swamp water samples, containing high TOC (79 and 183 mgC L-1), were filtered to determine the characteristics of NOM which permeate the NF/RO membranes. Liquid chromatography organic carbon detection (LC-OCD) was used to characterize the fractions in the permeates, consisting of about 1% of the original NOM. The average molecular weight of the permeate humic substances (HS) was more than four times larger than the membrane molecular weight cut-off. This suggests that large HS can permeate the NF/RO membranes through diffusion. Moreover, the relatively high aromaticity of the permeate HS (1.7-5.2 L mg-1 m-1) indicated the high content of hydrophobic-aromatic fractions.

4.
Water Res ; 101: 370-381, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288671

RESUMO

Many waters in Tanzania exhibit high concentrations of organic matter and dissolved contaminants such as fluoride. Due to bacteria and virus removal, ultrafiltration (UF) is an attractive option for drinking water treatment, and when coupled with adsorbents, may compete with other established processes like nanofiltration (NF) for lower contaminant concentrations. The results presented here examine the characteristics and treatability of tropical natural organic matter (NOM) by UF as a function of seasonal variation. The Tanzanian river Maji ya Chai was sampled monthly during one year. The composition of NOM in Maji ya Chai River is influenced strongly by precipitation. Total organic carbon (TOC), specific ultraviolet absorbance (SUVA) and concentration of allochthonous organics substances (such as humic substances (HS)) are elevated in periods following high precipitation, while TOC is lower and contains more biopolymers in the dry seasons. UF experiments with two regenerated cellulose membranes of different molecular weight cut-off (MWCO, 5 and 10 kDa) were conducted. UF is able to remove 50-95% of TOC with a seasonal variability of 10-20%. Due to the remaining NOM in the water that would contribute to disinfection by-product formation and bacterial regrowth, the physically disinfected water is more applicable for point of use systems than distribution or storage.


Assuntos
Rios , Ultrafiltração , Compostos Orgânicos , Estações do Ano , Tanzânia , Purificação da Água
5.
J Ind Microbiol Biotechnol ; 39(3): 429-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22052078

RESUMO

Pretreatment of cellulose with an industrial cellulosic solvent, N-methylmorpholine-N-oxide, showed promising results in increasing the rate of subsequent enzymatic hydrolysis. Cotton linter was used as high crystalline cellulose. After the pretreatment, the cellulose was almost completely hydrolyzed in less than 12 h, using low enzyme loading (15 FPU/g cellulose). The pretreatment significantly decreased the total crystallinity of cellulose from 7.1 to 3.3, and drastically increased the enzyme adsorption capacity of cellulose by approximately 42 times. A semi-mechanistic model was used to describe the relationship between the cellulose concentration and the enzyme loading. In this model, two reactions for heterogeneous reaction of cellulose to glucose and cellobiose, and a homogenous reaction for cellobiose conversion to glucose was incorporated. The Langmuir model was applied to model the adsorption of cellulase onto the treated cellulose. The competitive inhibition was also considered for the effects of sugar inhibition on the rate of enzymatic hydrolysis. The kinetic parameters of the model were estimated by experimental results and evaluated.


Assuntos
Celulose/química , Óxidos N-Cíclicos/química , Modelos Químicos , Morfolinas/química , Adsorção , Carboidratos/química , Celobiose/química , Celulase/química , Glucose , Hidrólise , Cinética
6.
Waste Manag ; 30(12): 2504-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20692142

RESUMO

A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.


Assuntos
Celulose/química , Etanol/síntese química , Química Verde/métodos , Poliésteres/química , Têxteis , Biocatálise , Celulose/metabolismo , Óxidos N-Cíclicos/química , Etanol/metabolismo , Fermentação , Hidrólise , Resíduos Industriais , Morfolinas/química , Poliésteres/metabolismo , Eliminação de Resíduos , Indústria Têxtil , Leveduras/enzimologia
7.
Biotechnol Bioeng ; 105(3): 469-76, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19806660

RESUMO

Pretreatment of high-crystalline cellulose with N-methyl-morpholine-N-oxide (NMO or NMMO) to improve bioethanol and biogas production was investigated. The pretreatments were performed at 90 and 120 degrees C for 0.5-15 h in three different modes, including dissolution (85% NMO), ballooning (79% NMO), and swelling (73% NMO). The pretreated materials were then enzymatically hydrolyzed and fermented to ethanol or anaerobically digested to biogas (methane). The pretreatment at 85% NMO, 120 degrees C and 2.5 h resulted in 100% yield in the subsequent enzymatic hydrolysis and around 150% improvement in the yield of ethanol compared to the untreated and water-treated material. However, the best results of biogas production were obtained when the cellulose was treated with swelling and ballooning mode, which gave almost complete digestion in 15 days. Thus, the pretreatment resulted in 460 g ethanol or 415 L methane from each kg of cellulose. Analysis of the structure of treated and untreated celluloses showed that the dissolution mode can efficiently convert the crystalline cellulose I to cellulose II. However, it decreases the water swelling capacity of the cellulose. On the other hand, swelling and ballooning modes in NMO treatment were less efficient in both water swelling capacity and cellulose crystallinity. No cellulose loss, ambient pressure, relatively moderate conditions, and high efficiency make the NMO a good alternative for pretreatment of high-crystalline cellulosic materials.


Assuntos
Biocombustíveis/microbiologia , Biotecnologia/métodos , Celulose/metabolismo , Óxidos N-Cíclicos/metabolismo , Etanol/metabolismo , Morfolinas/metabolismo , Fermentação , Temperatura Alta , Hidrólise , Fatores de Tempo
8.
Bioresour Technol ; 100(2): 1007-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18723342

RESUMO

Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.


Assuntos
Reatores Biológicos/microbiologia , Fibra de Algodão , Etanol/metabolismo , Resíduos Industriais/prevenção & controle , Saccharomyces cerevisiae/metabolismo , Indústria Têxtil , Têxteis/microbiologia
9.
J Agric Food Chem ; 56(18): 8314-8, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18729456

RESUMO

A new method was developed to determine glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) in materials containing chitin and chitosan, such as fungal cell walls. It is based on two steps of hydrolysis with (i) concentrated sulfuric acid at low temperature and (ii) dilute sulfuric acid at high temperature, followed by one-step degradation with nitrous acid. In this process, chitin and chitosan are converted into anhydromannose and acetic acid. Anhydromannose represents the sum of GlcN and GlcNAc, whereas acetic acid is a marker for GlcNAc only. The method showed recovery of 90.1% of chitin and 85.7-92.4% of chitosan from commercial preparations. Furthermore, alkali insoluble material (AIM) from biomass of three strains of zygomycetes, Rhizopus oryzae, Mucor indicus, and Rhizomucor pusillus, was analyzed by this method. The glucosamine contents of AIM from R. oryzae and M. indicus were almost constant (41.7 +/- 2.2% and 42.0 +/- 1.7%, respectively), while in R. pusillus, it decreased from 40.0 to 30.0% during cultivation from 1 to 6 days. The GlcNAc content of AIM from R. oryzae and R. pusillus increased from 24.9 to 31.0% and from 36.3 to 50.8%, respectively, in 6 days, while it remained almost constant during the cultivation of M. indicus (23.5 +/- 0.8%).


Assuntos
Acetilglucosamina/análise , Parede Celular/química , Fungos/ultraestrutura , Glucosamina/análise , Hidrólise , Mucor/ultraestrutura , Rhizomucor/ultraestrutura , Rhizopus/ultraestrutura , Ácidos Sulfúricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...