Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 54(23): 2910-2913, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29498735

RESUMO

Post-translational modification (PTM) of proteins plays essential regulatory roles in a variety of pathological conditions. Reliable and practical assays are required to accelerate the discovery of inhibitors and activators for PTM related diseases. Today, methodologies are based on specific or group-specific PTM recognition of e.g. phosphate for kinase activity without extending to other type of PTMs. Here we have established a universal time-resolved luminescence assay on a peptide-break platform for the direct detection of wide variety of PTMs. The developed assay is based on the leucine zipper concept wherein a europium-chelate labeled detection peptide and a non-labeled peptide substrate form a highly luminescent dimer. As an active PTM enzyme at sub or low nanomolar concentration modifies the substrate peptide, the luminescent signal of the detached detection peptide is quenched in the presence of soluble quenchers. The functionality of this universal assay technique has been demonstrated for the monitoring of phosphorylation, dephosphorylation, deacetylation, and citrullination with high applicability also to other PTMs in a high throughput format.

2.
Nucleic Acids Res ; 45(10): 6037-6050, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334819

RESUMO

RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the ß-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM-ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process.


Assuntos
Processamento Alternativo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Termodinâmica , Motivos de Aminoácidos , Calorimetria/métodos , Eletrólitos , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , RNA/química , Proteínas de Ligação a RNA/química , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo , Especificidade por Substrato , Temperatura , Água
3.
Bioelectromagnetics ; 35(7): 470-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123495

RESUMO

Previous studies on possible interactions of radiofrequency electromagnetic fields (RF EMFs) with proteins have suggested that RF EMFs might affect protein structure and folding kinetics. In this study, the isolated thermosensor protein GrpE of the Hsp70 chaperone system of Escherichia coli was exposed to EMFs of various frequencies and field strengths under strictly controlled conditions. Circular dichroism spectroscopy was used to monitor possible structural changes. Simultaneously, temperature was recorded at each point of observation. The coiled-coil part of GrpE has been reported to undergo a well-defined and fully reversible folding/unfolding transition, thus facilitating the differentiation between thermal and non-thermal effects of RF EMFs. Any direct effect of EMF on the conformation and/or stability would result in a shift of the conformational equilibrium of the protein at a given temperature. Possible immediate (t ≤ 0.1 s) and delayed (t ≥ 30 s) effects of RF EMFs were investigated with sinusoidal signals of 0.1, 1.0, and 1.9 GHz at various field strengths up to 5.0 kV/m and with GSM signals at 0.3 kV/m in the protein solution. Taking the overall uncertainty of the experimental system into account, possible RF EMF-induced shifts in the conformational equilibrium of less than 1% of its total range might have been detected. The results obtained with the different experimental protocols indicate, however, that the conformational equilibrium of GrpE is insensitive to electromagnetic fields in the tested range of frequency and field strength.


Assuntos
Campos Eletromagnéticos , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Dicroísmo Circular , Escherichia coli , Cinética , Fosfatos/química , Compostos de Potássio/química , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Temperatura
4.
Angew Chem Int Ed Engl ; 53(5): 1320-3, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24356903

RESUMO

Ste5 is a scaffold protein that controls the pheromone response of the MAP-kinase cascade in yeast cells. Upon pheromone stimulation, Ste5 (through its RING-H2 domain) interacts with the ß and γ subunits of an activated heterodimeric G protein and promotes activation of the MAP-kinase cascade. With structural and biophysical studies, we show that the Ste5 RING-H2 domain exists as a molten globule under native buffer conditions, in yeast extracts, and even in denaturing conditions containing urea (7 M). Furthermore, it exhibits high thermal stability in native conditions. Binding of the Ste5 RING-H2 domain to the physiological Gß/γ (Ste4/Ste18) ligand is accompanied by a conformational transition into a better folded, more globular structure. This study reveals novel insights into the folding mechanism and recruitment of binding partners by the Ste5 RING-H2 domain. We speculate that many RING domains may share a similar mechanism of substrate recognition and molten-globule-like character.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Mercaptoetanol/química , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/química , Temperatura , Ureia/química
5.
Bioelectromagnetics ; 34(6): 419-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23640851

RESUMO

A novel experimental system to distinguish between potential thermal and non-thermal effects of electromagnetic fields (EMFs) on the conformational equilibrium and folding kinetics of proteins is presented. The system comprises an exposure chamber installed within the measurement compartment of a spectropolarimeter and allows real-time observation of the circular dichroism (CD) signal of the protein during EMF exposure. An optical temperature probe monitors the temperature of the protein solution at the site of irradiation. The electromagnetic, thermal, and fluid-dynamic behavior of the system is characterized by numerical and experimental means. The number of repeated EMF on/off cycles needed for achieving a certain detection limit is determined on the basis of the experimentally assessed precision of the CD measurements. The isolated thermosensor protein GrpE of the Hsp70 chaperone system of Eschericha coli serves as the test protein. Long-term experiments show high thermal reproducibility as well as thermal stability of the experimental setup.


Assuntos
Campos Eletromagnéticos , Conformação Proteica/efeitos da radiação , Dicroísmo Circular , Eletroquímica/instrumentação , Proteínas de Escherichia coli/efeitos da radiação , Proteínas de Choque Térmico/efeitos da radiação , Radiação não Ionizante , Reprodutibilidade dos Testes , Termometria/instrumentação
6.
Nucleic Acids Res ; 41(4): 2505-16, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275549

RESUMO

The RNA binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in telomeres maintenance and pre-mRNA processing, such as alternative splicing and polyadenylation. It specifically recognizes RNA containing three consecutive guanines (G-tracts) that have the potential to assemble into G-quadruplexes. We have proposed recently that hnRNP F could regulate alternative splicing by remodeling RNA structures, such as G-quadruplexes. However, the exact mechanism of hnRNP F binding to such RNA sequences remains unknown. Here, we have studied the binding of the third RNA binding domain of hnRNP F [quasi-RNA recognition motif 3 (qRRM3)] to G-tract RNA using isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy. Our results show that qRRM3 binds specifically exclusively to single-stranded G-tracts (ssRNA), in contrast to previous reports stating that the G-quadruplex was recognized as well. Furthermore, we demonstrate that the pre-existent ssRNA/G-quadruplex equilibrium slows down the formation of the protein-ssRNA complex. Based on in vitro transcription assays, we show that the rate of the protein-RNA complex formation is faster than that of the G-quadruplex. We propose a model according to which hnRNP F could bind RNA co-transcriptionally and prevents G-quadruplex formation.


Assuntos
Quadruplex G , Guanina/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/química , RNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Cinética , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Telômero/química , Termodinâmica
7.
Biophys Chem ; 171: 54-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23176826

RESUMO

In this study we used an engineered six-helix bundle construct corresponding to the fusogenic core of the SIV gp41 protein as a model system to investigate the folding of a trimeric protein, which acquires a compact structure upon association of largely unstructured monomeric peptides. Thirteen mutants were generated in order to gain information about the thermodynamic and kinetic roles of topologically conserved tertiary interactions to folding and stability. The effect of the mutations was assessed by circular dichroism spectroscopy from urea-induced equilibrium unfolding experiments and in time-resolved mode to follow the kinetics of refolding and unfolding. While individual experiments can be interpreted in terms of a simple monomer-trimer refolding/unfolding reaction mechanism, comparison of equilibrium and kinetic data reveals that some variants clearly deviate from this two-state behavior and that most proteins cannot be classified as two-state folders without some reservations. Nevertheless, following "quasi-φ-value" and "quasi-ß(T)-value" analyses, we propose that the highest-energy barrier along the folding pathway is passed in the trimeric state, after the C-terminal half of each monomer chain is "fixed" in anti-parallel orientation to the surface of the central, still nascent N-terminal coiled-coil.


Assuntos
Glicoproteínas de Membrana/química , Dobramento de Proteína , Proteínas dos Retroviridae/química , Vírus da Imunodeficiência Símia/química , Cinética , Glicoproteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas dos Retroviridae/genética , Vírus da Imunodeficiência Símia/genética , Termodinâmica
8.
J Phys Chem B ; 116(46): 13705-12, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23116486

RESUMO

We explore the capability of the azidohomoalanine (Aha) as a vibrational label for 2D IR spectroscopy to study the binding of the target peptide to the PDZ2 domain. The Aha label responds sensitively to its local environment and its peak extinction coefficient of 350-400 M(-1) cm(-1) is high enough to routinely measure it in the low millimolar concentration regime. The central frequency, inhomogeneous width and spectral diffusion times deduced from the 2D IR line shapes of the Aha label at various positions in the peptide sequence is discussed in relationship to the known X-ray structure of the peptide bound to the PDZ2 domain. The results suggest that the Aha label introduces only a small perturbation to the overall structure of the peptide in the binding pocket. Finally, Aha is a methionine analog that can be incorporated also into larger proteins at essentially any position using protein expression. Altogether, Aha thus fulfills the requirements a versatile label should have for studies of protein structure and dynamics by 2D IR spectroscopy.


Assuntos
Alanina/análogos & derivados , Espectrofotometria Infravermelho , Alanina/química , Ligantes , Modelos Moleculares , Coloração e Rotulagem
9.
J Mol Biol ; 405(2): 410-26, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21056576

RESUMO

Adenoviruses (Ads) hold great promise as gene vectors for diagnostic or therapeutic applications. The native tropism of Ads must be modified to achieve disease site-specific gene delivery by Ad vectors and this should be done in a programmable way and with technology that can realistically be scaled up. To this end, we applied the technologies of designed ankyrin repeat proteins (DARPins) and ribosome display to develop a DARPin that binds the knob domain of the Ad fiber protein with low nanomolar affinity (K(D) 1.35 nM) and fused this protein with a DARPin specific for Her2, an established cell-surface biomarker of human cancers. The stability of the complex formed by this bispecific targeting adapter and the Ad virion resulted in insufficient gene transfer and was subsequently improved by increasing the valency of adapter-virus binding. In particular, we designed adapters that chelated the knob in a bivalent or trivalent fashion and showed that the efficacy of gene transfer by the adapter-Ad complex increased with the functional affinity of these molecules. This enabled efficient transduction at low stoichiometric adapter-to-fiber ratios. We confirmed the Her2 specificity of this transduction and its dependence on the Her2-binding DARPin component of the adapters. Even the adapter molecules with four fused DARPins could be produced and purified from Escherichia coli at very high levels. In principle, DARPins can be generated against any target and this adapter approach provides a versatile strategy for developing a broad range of disease-specific gene vectors.


Assuntos
Adenoviridae/genética , Repetição de Anquirina/genética , Marcação de Genes , Receptor ErbB-2/genética , Tropismo Viral , Vírion/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Rim/virologia , Luciferases/metabolismo , Biblioteca de Peptídeos , Receptor ErbB-2/metabolismo
10.
J Mol Recognit ; 23(5): 395-413, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20213668

RESUMO

Isothermal titration calorimetry (ITC) is a fast, accurate and label-free method for measuring the thermodynamics and binding affinities of molecular associations in solution. Because the method will measure any reaction that results in a heat change, it is applicable to many different fields of research from biomolecular science, to drug design and materials engineering, and can be used to measure binding events between essentially any type of biological or chemical ligand. ITC is the only method that can directly measure binding energetics including Gibbs free energy, enthalpy, entropy and heat capacity changes. Not only binding thermodynamics but also catalytic reactions, conformational rearrangements, changes in protonation and molecular dissociations can be readily quantified by performing only a small number of ITC experiments. In this review, we highlight some of the particularly interesting reports from 2008 employing ITC, with a particular focus on protein interactions with other proteins, nucleic acids, lipids and drugs. As is tradition in these reviews we have not attempted a comprehensive analysis of all 500 papers using ITC, but emphasize those reports that particularly captured our interest and that included more thorough discussions we consider exemplify the power of the technique and might serve to inspire other users.


Assuntos
Calorimetria/história , Calorimetria/métodos , Termodinâmica , Desenho de Fármacos , História do Século XXI , Lipídeos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , Temperatura
11.
Mol Cancer Ther ; 9(1): 167-79, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20053783

RESUMO

We investigated here the effects of S2T1-6OTD, a novel telomestatin derivative that is synthesized to target G-quadruplex-forming DNA sequences, on a representative panel of human medulloblastoma (MB) and atypical teratoid/rhabdoid (AT/RT) childhood brain cancer cell lines. S2T1-6OTD proved to be a potent c-Myc inhibitor through its high-affinity physical interaction with the G-quadruplex structure in the c-Myc promoter. Treatment with S2T1-6OTD reduced the mRNA and protein expressions of c-Myc and hTERT, which is transcriptionally regulated by c-Myc, and decreased the activities of both genes. In remarkable contrast to control cells, short-term (72-hour) treatment with S2T1-6OTD resulted in a dose- and time-dependent antiproliferative effect in all MB and AT/RT brain tumor cell lines tested (IC(50), 0.25-0.39 micromol/L). Under conditions where inhibition of both proliferation and c-Myc activity was observed, S2T1-6OTD treatment decreased the protein expression of the cell cycle activator cyclin-dependent kinase 2 and induced cell cycle arrest. Long-term treatment (5 weeks) with nontoxic concentrations of S2T1-6OTD resulted in a time-dependent (mainly c-Myc-dependent) telomere shortening. This was accompanied by cell growth arrest starting on day 28 followed by cell senescence and induction of apoptosis on day 35 in all of the five cell lines investigated. On in vivo animal testing, S2T1-6OTD may well represent a novel therapeutic strategy for childhood brain tumors.


Assuntos
Quadruplex G/efeitos dos fármacos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Oxazóis/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tumor Rabdoide/patologia , Teratoma/patologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Meduloblastoma/enzimologia , Oxazóis/química , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Tempo
12.
J Biol Chem ; 285(8): 5802-14, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20008324

RESUMO

Microtubule plus-end tracking proteins (+TIPs) are involved in many microtubule-based processes. End binding (EB) proteins constitute a highly conserved family of +TIPs. They play a pivotal role in regulating microtubule dynamics and in the recruitment of diverse +TIPs to growing microtubule plus ends. Here we used a combination of methods to investigate the dimerization properties of the three human EB proteins EB1, EB2, and EB3. Based on Förster resonance energy transfer, we demonstrate that the C-terminal dimerization domains of EBs (EBc) can readily exchange their chains in solution. We further document that EB1c and EB3c preferentially form heterodimers, whereas EB2c does not participate significantly in the formation of heterotypic complexes. Measurements of the reaction thermodynamics and kinetics, homology modeling, and mutagenesis provide details of the molecular determinants of homo- versus heterodimer formation of EBc domains. Fluorescence spectroscopy and nuclear magnetic resonance studies in the presence of the cytoskeleton-associated protein-glycine-rich domains of either CLIP-170 or p150(glued) or of a fragment derived from the adenomatous polyposis coli tumor suppressor protein show that chain exchange of EBc domains can be controlled by binding partners. Extension of these studies of the EBc domains to full-length EBs demonstrate that heterodimer formation between EB1 and EB3, but not between EB2 and the other two EBs, occurs both in vitro and in cells as revealed by live cell imaging. Together, our data provide molecular insights for rationalizing the dominant negative control by C-terminal EB domains and form a basis for understanding the functional role of heterotypic chain exchange by EBs in cells.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Multimerização Proteica/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Complexo Dinactina , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
13.
FEBS J ; 276(18): 5263-74, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19682074

RESUMO

YhdA, a thermostable NADPH:FMN oxidoreductase from Bacillus subtilis, reduces quinones via a ping-pong bi-bi mechanism with a pronounced preference for NADPH. The enzyme occurs as a stable tetramer in solution. The two extended dimer surfaces are packed against each other by a 90 rotation of one dimer with respect to the other. This assembly is stabilized by the formation of four salt bridges between K109 and D137 of the neighbouring protomers. To investigate the importance of the ion pair contacts, the K109L and D137L single replacement variants, as well as the K109L/D137L and K109D/D137K double replacement variants, were generated, expressed, purified, crystallized and biochemically characterized. The K109L and D137L variants form dimers instead of tetramers, whereas the K109L/D137L and K109D/D137K variants appear to exist in a dimer-tetramer equilibrium in solution. The crystal structures of the K109L and D137L variants confirm the dimeric state, with the K109L/D137L and K109D/D137K variants adopting a tetrameric assembly. Interestingly, all protein variants show a drastically reduced quinone reductase activity in steady-state kinetics. Detailed analysis of the two half reactions revealed that the oxidative half reaction is not affected, whereas reduction of the bound FMN cofactor by NADPH is virtually abolished. Inspection of the crystal structures indicates that the side chain of K109 plays a dual role by forming a salt bridge to D137, as well as stabilizing a glycine-rich loop in the vicinity of the FMN cofactor. In all protein variants, this glycine-rich loop exhibits a much higher mobility, compared to the wild-type. This appears to be incompatible with NADPH binding and thus leads to abrogation of flavin reduction.


Assuntos
Bacillus subtilis/enzimologia , NAD(P)H Desidrogenase (Quinona)/química , Catálise , Cristalização , Dimerização , Estabilidade Enzimática , NAD(P)H Desidrogenase (Quinona)/metabolismo , Dobramento de Proteína , Subunidades Proteicas
14.
Cell ; 138(2): 366-76, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632184

RESUMO

Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Sinais Direcionadores de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
15.
Methods Mol Biol ; 490: 227-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19157086

RESUMO

Although the energetic balance of forces stabilizing proteins has been established qualitatively over the last decades, quantification of the energetic contribution of particular interactions still poses serious problems. The reasons are the strong cooperativity and the interdependence ofnoncovalent interactions. Salt bridges are a typical example. One expects that ionizable side chains frequently form ion pairs in innumerable crystal structures. Since electrostatic attraction between opposite charges is strong per se, salt bridges can intuitively be regarded as an important factor stabilizing the native structure. Is that really so? In this chapter we critically reassess the available methods to delineate the role ofelectrostatic interactions and salt bridges to protein stability, and discuss the progress and the obstacles in this endeavor. The basic problem is that formation of salt bridges depends on the ionization properties of the participating groups, which is significantly influenced by the protein environment. Furthermore, salt bridges experience thermal fluctuations, continuously break and re-form, and their lifespan in solution is governed by the flexibility of the protein. Finally, electrostatic interactions are long-range and might be significant in the unfolded state, thus seriously influencing the energetic profile. Elimination of salt bridges by protonation/deprotonation at extreme pH or by mutation provides only rough energetic estimates, since there is no way to account for the nonadditive response of the protein moiety. From what we know so far, the strength of electrostatic interactions is strongly context-dependent, yet it is unlikely that salt bridges are dominant factors governing protein stability. Nevertheless, proteins from thermophiles and hyperthermophiles exhibit more, and frequently networked, salt bridges than proteins from the mesophilic counterparts. Increasing the thermal (not the thermodynamic) stability of proteins by optimization of charge-charge interactions is a good example for an evolutionary solution utilizing physical factors.


Assuntos
Dobramento de Proteína , Proteínas/química , Sais/química , Estabilidade Proteica , Eletricidade Estática , Termodinâmica
16.
J Mol Recognit ; 21(5): 289-312, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18729242

RESUMO

Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.


Assuntos
Termodinâmica , Calibragem , Calorimetria/instrumentação , Calorimetria/métodos , Desenho de Fármacos , Metabolismo Energético/fisiologia , Ativação Enzimática/fisiologia , Cinética , Ligantes , Modelos Teóricos , Ácidos Nucleicos/metabolismo , Ligação Proteica , Proteínas/metabolismo , Relação Estrutura-Atividade , Titulometria/instrumentação , Titulometria/métodos
17.
J Mol Biol ; 382(4): 971-7, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18680748

RESUMO

An engineered monomeric chorismate mutase (mMjCM) has been found to combine high catalytic activity with the characteristics of a molten globule. To gain insight into the dramatic structural changes that accompany binding of a transition-state analog, we examined mMjCM by isothermal calorimetry and compared it with its dimeric parent protein, MjCM (CM from Methanococcus jannaschii), a thermostable and conventionally folded enzyme. As expected for a ligand-induced ordering process, there is a large entropic penalty for binding to the monomer relative to the dimer (-TDeltaDeltaS=5.1+/-0.5 kcal/mol, at 20 degrees C). However, this unfavorable entropy term is largely offset by enthalpic gains (DeltaDeltaH=-3.5+/-0.4 kcal/mol), presumably arising from tightening of non-covalent interactions throughout the monomeric complex. Stopped-flow kinetic measurements further reveal that the catalytic molten globule binds and releases ligands significantly faster than its natural counterpart, demonstrating that partial structural disorder can speed up molecular recognition. These results illustrate how structural plasticity may strongly perturb the thermodynamics and kinetics of transition-state recognition while negligibly affecting catalytic efficiency.


Assuntos
Corismato Mutase/química , Corismato Mutase/metabolismo , Ligantes , Mathanococcus/enzimologia , Estrutura Terciária de Proteína , Calorimetria , Corismato Mutase/genética , Cinética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Termodinâmica
18.
J Mol Recognit ; 21(1): 1-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18200608

RESUMO

Isothermal titration calorimetry (ITC) is a fast and robust method to determine the energetics of association reactions in solution. The changes in enthalpy, entropy and heat capacity that accompany binding provide unique insights into the balance of forces driving association of molecular entities. ITC is used nowadays on a day-to-day basis in hundreds of laboratories. The method aids projects both in basic and practice-oriented research ranging from medicine and biochemistry to physical chemistry and material sciences. Not surprisingly, the range of studies utilizing ITC data is steadily expanding. In this review, we discuss selected results and ideas that have accumulated in the course of the year 2006, the focus being on biologically relevant systems. Theoretical developments, novel applications and studies that provide a deeper level of understanding of the energetic principles of biological function are primarily considered. Following the appearance of a new generation of titration calorimeters, recent papers provide instructive examples of the synergy between energetic and structural approaches in biomedical and biotechnological research.


Assuntos
Calorimetria/métodos , Animais , Bibliografias como Assunto , Desenho de Fármacos , Enzimas , Humanos , Cinética , Termodinâmica
19.
Proteins ; 70(3): 810-22, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17729276

RESUMO

The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Lipoproteínas/química , Termodinâmica , Proteínas da Membrana Bacteriana Externa/metabolismo , Simulação por Computador , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lipoproteínas/metabolismo , Conformação Proteica , Dobramento de Proteína , Eletricidade Estática
20.
Biochemistry ; 46(43): 12427-40, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17915948

RESUMO

The Myc/Mad/Max network of dimeric basic region-helix-loop-helix-leucine zipper (b-HLH-LZ) transcription factors bind to enhancer box sequences (E-box) in the promotors of a large set of genes that control cell metabolism, proliferation, and differentiation. Max (Myc-associated factor X) is the obligate heterodimerization partner of Myc and Mad proteins. On the other hand, Max is the only member of the family capable of forming a stable homodimer. As part of the transcriptional regulation mechanism, Myc/Max and Mad/Max heterodimers and Max homodimers are thought to compete for binding to the E-box target sequences. E-box recognition is structurally supported by the b-HLH-LZ structural motif, which also promotes dimerization. However, the actual dimerization and heterodimerization constants of the complete gene products and their affinities for E-box sequences are not known. Also, the detailed thermodynamic characterization of DNA binding by these transcription factors has not been done yet. Such knowledge is necessary for complete understanding of the transcriptional regulation carried out by the Myc/Mad/Max network. Here, we report the first in-depth thermodynamic characterization of the stability and specific DNA binding of a full length gene product of the Myc/Mad/Max family, namely, Max protein isoform p21 (Max p21). Using calorimetric methods (DSC and ITC) we have determined the dimerization constant of Max p21 in the low micromolar range, and the Max p21/E-box complex dissociation constant in the low nanomolar range at 37 degrees C. The association is driven by a large exothermic effect, which is partly compensated by entropic factors. The energetic contribution to binding affinity of seven highly conserved residues that contact the DNA was probed by X-to-Ala mutagenesis. The results demonstrate that high binding affinity critically relies on the side chain of Arg 26. Furthermore, the mutational analysis points to the important role of the persistent helical turn that comprises this residue at the junction of the basic region and helix H1. Altogether, the study supports the idea that Max p21 can bind E-box sequences in vivo and likely participates directly in the regulation of transcription as homodimer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Termodinâmica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Mutagênese Sítio-Dirigida , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...