Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(20): 4505-4515.e4, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738972

RESUMO

During mitosis, unattached kinetochores in a dividing cell signal to the spindle assembly checkpoint (SAC) to delay anaphase onset and prevent chromosome missegregation.1,2,3,4 The signaling activity of these kinetochores and the likelihood of chromosome missegregation depend on the amount of SAC signaling proteins each kinetochore recruits.5,6,7,8 Therefore, factors that control SAC protein recruitment must be thoroughly understood. Phosphoregulation of kinetochore and SAC signaling proteins due to the concerted action of many kinases and phosphatases is a significant determinant of the SAC protein recruitment to signaling kinetochores.9 Whether the abundance of SAC proteins also influences the recruitment and signaling activity of human kinetochores has not been studied.8,10 Here, we reveal that the low cellular abundance of the SAC signaling protein Bub1 limits its own recruitment and that of BubR1 and restricts the SAC signaling activity of the kinetochore. Conversely, Bub1 overexpression results in higher recruitment of SAC proteins, producing longer delays in anaphase onset. We also find that the number of SAC proteins recruited by a signaling kinetochore is inversely correlated with the total number of signaling kinetochores in the cell. This correlation likely arises from the competition among the signaling kinetochores to recruit from a limited pool of signaling proteins, including Bub1. The inverse correlation may allow the dividing cell to prevent a large number of signaling kinetochores in early prophase from generating an overly large signal while enabling the last unaligned kinetochore in late prometaphase to signal at the maximum strength.


Assuntos
Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Cinetocoros/metabolismo , Mitose , Fuso Acromático/metabolismo
2.
Curr Biol ; 32(1): 237-247.e6, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34861183

RESUMO

Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.


Assuntos
Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
3.
Curr Microbiol ; 77(7): 1203-1209, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32095890

RESUMO

Catastrophic global accumulation of non-biodegradable plastic has led to efforts for production of alternative eco-friendly biopolymer. Here, we attempted to produce a biodegradable, cytocompatible and eco-friendly polyhydroxy-butyrate (PHB) from a pigmented Bacillus sp. C1 (2013) (KF626477) through submerged (SmF) and solid-state fermentation (SSF). Under SmF and SSF, 0.60 g l-1 and 1.56 g l-1 of PHB with 0.497 g l-1 of yellow fluorescent pigment (YFP) was produced. Fourier transform infrared (FTIR) absorption bands at 1719-1720 cm-1 indicate the presence of C=O group of PHB. Nuclear magnetic resonance (NMR) exhibited the typical chemical shift patterns of PHB, and crystallinity was confirmed from X-ray diffraction (XRD). The melting temperature (Tm), degradation temperature (Td) and crystallinity (Xc) of extracted PHB were found to be 171 °C, 288 °C and 35%, respectively. FACS (Fluorescence-activated cell sorting) confirmed cytocompatibility of PHB at 400 µg ml-1 in mouse fibroblast line. Moreover, biodegradability and elevated cytocompatibility of the PHB produced through SSF make them highly potential biomaterials to be used as a drug delivery carrier in future.


Assuntos
Bacillus/metabolismo , Materiais Biocompatíveis , Hidroxibutiratos , Poli-Hidroxialcanoatos , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Fermentação , Hidroxibutiratos/química , Hidroxibutiratos/isolamento & purificação , Hidroxibutiratos/metabolismo , Hidroxibutiratos/toxicidade , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/isolamento & purificação , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/toxicidade , Hipoclorito de Sódio , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...