Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31019, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803923

RESUMO

In the present study, we explored the temperature evolution and hydrogen desorption properties of the Mg50Ni50 alloy through both numerical simulation and experimental analyses. Desorption kinetics characterization was carried out using the volumetric method, specifically employing a Sievert's-type apparatus to investigate solid-gas reactions. The experiments covered a temperature range from 313 K to 353 K, with an initial hydrogen pressure of 12 bar. Simultaneously, a mathematical approach was employed to numerically investigate the temperature evolution within the hydride bed. Using COMSOL Multiphysics as a simulator, a numerical simulation was conducted based on experimental data. The study examined the impact of cooling temperature on hydride temperature evolution. Results revealed that hydrogen desorption kinetics of the amorphous Mg50Ni50 alloy are more significant compared to those of Mg2Ni compounds. Moreover, the effect of the warming temperature on the equilibrium pressure can also be observed in the hydrogen desorption isotherm curves. The experimental study of the Mg50Ni50 alloy provided activation energy data, along with determination of hydride formation enthalpy and entropy. On the other hand, we showed that the hydride temperature is maximum at the hydride-hydrogen interface within the hydride center.

2.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793304

RESUMO

The results of an experimental and mathematical study into the MmNi4.2Mn0.8 compound's hydrogen storage properties are presented in the present research. Plotting and discussion of the experimental isotherms (P-C-T) for different starting temperatures (288 K, 298 K, 308 K, and 318 K) were carried out first. Then, the enthalpy and entropy of formation (ΔH0, ΔS0) were deduced from the plot of van't Hoff. Following that, the P-C-T were contrasted with a mathematical model developed via statistical physics modeling. The steric and energetic parameters, such as the number of the receiving sites (n1, n2), their densities (Nm1, Nm2), and the energy parameters (P1, P2) of the system, were calculated thanks to the excellent agreement between the numerical and experimental results. Therefore, plotting and discussing these parameters in relation to temperature preceded their application in determining the amount of hydrogen in each type of site per unit of metal ([H/M]1, [H/M]2) as well as for the entire system [H/M] versus temperature and pressure besides the absorption energies associated with each kind of site (ΔE1, ΔE2) and the thermodynamic functions (free energy, Gibbs energy, and entropy) that control the absorption reaction.

3.
ACS Omega ; 9(8): 8743-8753, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434847

RESUMO

This research article explores the potential of using agave Americana fibers (AAFs) to enhance the physical and mechanical properties of concretes. The study investigates the impact of AAFs on concrete mix proportions in detail. Different concrete compositions are systematically created by integrating AAFs into them. The chemical structure, crystallinity, morphology, and tensile strength of extracted AAFs are examined, revealing a low cellulose content and a crystallinity index of around 41.34%. The microstructural analysis highlights the rough surface morphology of the extracted AAFs. The research also evaluates how AAFs affect concrete density, water uptake, and flexural and compressive strengths across various mixtures. The results show that incorporating AAFs in a horizontal position can increase the flexural resistance by up to 99% and the compressive resistance by up to 86% without chemical reactions occurring with mud-lime concrete. However, it is worth noting that using AAFs with cement can affect fiber durability due to the alkaline environment. As the alkali concentration increases, the fiber mechanical resistance decreases. Therefore, it is recommended to use AAFs with noncement concrete for improved sustainability and durability. Overall, this study advances our understanding of eco-friendly and resilient concrete materials.

4.
Heliyon ; 9(10): e20311, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767487

RESUMO

A study of the magnetic properties of LaNi5 intermetallic compoundand and their effect on desorption reaction was carried out as a function of temperature. A Vibrating Sample Magnetometer (VSM) was used for the magnetic measurements and a Metal Hydrogen Reactor (MHR) supplied by a constant current through a coil was used for the hydrogen desorption reaction under the action of a magnetostatic field. Then, the hysteresis cycle, the first magnetization curve, the thermo-magnetization curves and the desorbed hydrogen mass were determined. The results showed that the application of a magnetic field corresponding to the magnetization at saturation Ms at a given temperature improved the hydrogen desorption reaction by the LaNi5.

5.
ACS Omega ; 8(13): 12039-12051, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033867

RESUMO

Earlier research suggested using ash to substitute cement, whereas other studies looked at the possibility of using plant-derived agricultural wastes as fiber reinforcement in cement applications. This study offered an environmentally friendly option to change traditional mortars by replacing cement with fly bottom ash (FBA) waste at 10, 20, 30, and 40 wt %. Likewise, Arundo donax leaves (ADL) were employed to reinforce the modified cement mortars at 0.4, 2, 5, and 7 wt %. X-ray diffraction analysis of used materials was performed. The morphology of composites made with FBA and ADL was investigated using scanning electron microscopy. Moreover, the density, water uptake, thermal conductivity, energy gain, and carbon dioxide (CO2) emissions of the prepared composites were discussed. Their flexural strength, compressive strength, and displacement were also compared. Results revealed that the addition of FBA in the mortar matrix has a positive effect on decreasing the thermal conductivity and lightness of the mortar. In addition, 20 wt % of cement replacement by FBA guarantees simultaneously moderate mechanical properties, nearly 51% of energy gain, and 20% of total CO2 emission reduction. In the same, adding ADL to the 20wt %FBA mortar reduced the thermal conductivity and the lightness of the mortar. The 0.4 wt % ADL reinforcement ensured 59% energy gain and 6% of total CO2 emission reduction. A major amelioration was observed in the compressive strength (an increase of 14%) and in the plasticity (an increase of 27%) of the considered composite materials. In conclusion, using FBA as a cement replacement with low ADL content inclusion results in a thermal-resistant composite with reasonable durability and strength.

6.
RSC Adv ; 9(66): 38454-38463, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540216

RESUMO

The objective of this paper was to study CO2 adsorption on activated clay in the framework of geological storage. The activation of clay was characterized via scanning electron microscopy, N2 adsorption-desorption isotherms, and X-ray diffraction. The adsorption isotherms were generated at different temperatures, namely, 298 K, 323 K, and 353 K. Based on the experimental result, a new model was simulated and interpreted using a multi-layer model with two interaction energies. The physicochemical parameters that described the CO2 adsorption process were determined by physical statistical formalism. The characteristic parameters of the CO2 adsorption isotherm such as the number of carbon dioxide molecules per site (n), the receptor site densities (NM), and the energetic parameters were investigated. In addition, the thermodynamic functions that governed the adsorption process such as the internal energy, entropy, and Gibbs free energy were determined by a statistical physics model. Thus, the results showed that CO2 adsorption on activated clay was spontaneous and exothermic in nature.

7.
Phys Rev E ; 94(4-1): 043306, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841484

RESUMO

The present work proposes a simple lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media. By incorporating forces and source terms into the lattice Boltzmann equation, the incompressible Navier-Stokes equations are recovered through the Chapman-Enskog expansion. It is found that the added terms are just the extra terms in the governing equations for the axisymmetric thermal flows through porous media compared with the Navier-Stokes equations. Four numerical simulations are performed to validate this model. Good agreement is obtained between the present work and the analytic solutions and/or the results of previous studies. This proves its efficacy and simplicity regarding other methods. Also, this approach provides guidance for problems with more physical phenomena and complicated force forms.

8.
J Heat Transfer ; 136(4): 0429011-4290110, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24895467

RESUMO

The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...