Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(9): 563-573, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38031324

RESUMO

Using density functional theory (DFT), we treat the reaction of coupling of CO2 with aziridine in gas phase, in the presence of water and of a green catalyst (NaBr). Computations show that, in gas phase, this ring-opening conversions to oxazolidinones initiates by coordinating a CO2 molecule to the nitrogen atom of the aziridine. Then, a nucleophilic interaction between one oxygen atom of the coordinated CO2 and the carbon atom of the aziridine occurs. For methyl substituted aziridine, two pathways are proposed leading either to 4-oxazolidinone or to 5-oxazolidinone. Besides, we show that the activation energy of this reaction reduces in aqueous solution, in the presence of a water molecule explicitly or NaBr catalyst. In addition, the corresponding reaction mechanisms and regioselectivity associated with this ring-opening conversions to oxazolidinones, in the presence of carbon dioxide are found to be influenced by solvent and catalyst. The present findings should allow better designing regioisomer oxazolidinones relevant for organic chemistry, medicinal and pharmacological applications.

2.
Sci Rep ; 12(1): 1894, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115646

RESUMO

Nanoelectromechanical systems (NEMS) have received great interest from researchers around the world since the advent of nanotechnology and nanoengineering. This can be attributed due to the unique characteristics of NEMS devices and their wide range of applications. Among these applications, nanobeams and nanotubes now have an important role in the design of a variety of NEMS engineering devices. In the current research, the thermoelastic vibration analysis of Euler-Bernoulli nanobeams has been investigated using the theory of non-local elasticity proposed by Eringen. Also to study the effect of temperature change, the generalized thermoelastic model with dual phase-lag (DPL) is applied. The studied nanobeam is subjected to an axial thermal excitation load and surrounded by a magnetic field of constant strength. The Laplace transform technique has been used to solve the system differential equations and to find an approximate analytical solution for the different physical fields of the nanobeam. The numerical results obtained for the studied variables have been graphically clarified and discussed analytically. The effects of various influencing factors such as magnetic field strength, temperature change, non-local parameter as well as ramp type parameter have been examined and studied in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...