Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(2): 462-476, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36200330

RESUMO

Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate-growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate-growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate-growth response for temperate forests.


Assuntos
Pinus , Traqueófitas , Florestas , Mudança Climática , Temperatura
2.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823427

RESUMO

This study presents a novel approach in the application of Unmanned Aerial Vehicle (UAV) imaging for the conjoint assessment of the snow depth and winter leaf area index (LAI), a structural property of vegetation, affecting the snow accumulation and snowmelt. The snow depth estimation, based on a multi-temporal set of high-resolution digital surface models (DSMs) of snow-free and of snow-covered conditions, taken in a partially healthy to insect-induced Norway spruce forest and meadow coverage area within the Sumava National Park (Sumava NP) in the Czech Republic, was assessed over a winter season. The UAV-derived DSMs featured a resolution of 0.73⁻1.98 cm/pix. By subtracting the DSMs, the snow depth was determined and compared with manual snow probes taken at ground control point (GCP) positions, the root mean square error (RMSE) ranged between 0.08 m and 0.15 m. A comparative analysis of UAV-based snow depth with a denser network of arranged manual snow depth measurements yielded an RMSE between 0.16 m and 0.32 m. LAI assessment, crucial for correct interpretation of the snow depth distribution in forested areas, was based on downward-looking UAV images taken in the forest regime. To identify the canopy characteristics from downward-looking UAV images, the snow background was used instead of the sky fraction. Two conventional methods for the effective winter LAI retrieval, the LAI-2200 plant canopy analyzer, and digital hemispherical photography (DHP) were used as a reference. Apparent was the effect of canopy density and ground properties on the accuracy of DSMs assessment based on UAV imaging when compared to the field survey. The results of UAV-based LAI values provided estimates were comparable to values derived from the LAI-2200 plant canopy analyzer and DHP. Comparison with the conventional survey indicated that spring snow depth was overestimated, and spring LAI was underestimated by using UAV photogrammetry method. Since the snow depth and the LAI parameters are essential for snowpack studies, this combined method here will be of great value in the future to simplify snow depth and LAI assessment of snow dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...