RESUMO
Senecavirus A (SVA) is an emerging picornavirus that causes vesicular disease (VD) in swine. The virus has been circulating in swine in the United Stated (USA) since at least 1988, however, since 2014 a marked increase in the number of SVA outbreaks has been observed in swine worldwide. The factors that led to the emergence of SVA remain unknown. Evolutionary changes that accumulated in the SVA genome over the years may have contributed to the recent increase in disease incidence. Here we compared full-genome sequences of historical SVA strains (identified before 2010) from the USA and global contemporary SVA strains (identified after 2011). The results from the genetic analysis revealed 6.32â% genetic divergence between historical and contemporary SVA isolates. Selection pressure analysis revealed that the SVA polyprotein is undergoing selection, with four amino acid (aa) residues located in the VP1 (aa 735), 2A (aa 941), 3C (aa 1547) and 3D (aa 1850) coding regions being under positive/diversifying selection. Several aa substitutions were observed in the structural proteins (VP1, VP2 and VP3) of contemporary SVA isolates when compared to historical SVA strains. Some of these aa substitutions led to changes in the surface electrostatic potential of the structural proteins. This work provides important insights into the molecular evolution and epidemiology of SVA.
Assuntos
Doenças Transmissíveis Emergentes , Infecções por Picornaviridae/veterinária , Picornaviridae/genética , Doenças dos Suínos/virologia , Substituição de Aminoácidos/genética , Animais , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Surtos de Doenças , Evolução Molecular , Variação Genética , Genoma Viral , Filogenia , Infecções por Picornaviridae/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos/epidemiologia , Proteínas Virais/genética , Proteínas Estruturais Virais/genéticaRESUMO
In February and March 2009, approximately 1,500 backyard pigs of variable age became sick, and approximately 700 of them died or were euthanized in the Lower Artibonite Valley and the Lower Plateau of the Republic of Haiti. The main clinical sign was posterior ataxia followed by paresis and/or paralysis on the second or third day of illness. No gross lesions were observed at postmortem examinations. The morbidity and mortality were approximately 60% and 40%, respectively. Diagnostic samples (whole blood, brain, tonsil, lymph nodes, spleen, and lung) were negative for Classical swine fever virus and African swine fever virus. Porcine teschovirus type 1 was detected by reverse transcription polymerase chain reactions in brain samples. Results of virus isolation, electron microscopy of virus particles, histopathological analysis on brain tissues, nucleic acid sequencing, and phylogenetic analysis of the viral isolate supported the diagnosis of teschovirus encephalomyelitis. The outbreak of the disease in Haiti is the first appearance of the severe form of teschovirus encephalomyelitis in the Americas. This disease poses a potential threat to the swine industries in other Caribbean countries, as well as to Central and North American countries.