Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Infect Dis ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324766

RESUMO

BACKGROUND: MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS: A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS: mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS: Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION: NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).

2.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662906

RESUMO

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Humanos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/uso terapêutico , Mutação , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
3.
Front Immunol ; 13: 1046631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569931

RESUMO

Regulatory T cells (Tregs) normally maintain self-tolerance. Tregs recognize "self" such that when they are not working properly, such as in autoimmunity, the immune system can attack and destroy one's own tissues. Current therapies for autoimmunity rely on relatively ineffective and too often toxic therapies to "treat" the destructive inflammation. Restoring defective endogenous immune regulation (self-tolerance) would represent a paradigm shift in the therapy of these diseases. One recent approach to restore self-tolerance is to use "low dose IL-2" as a therapy to increase the number of circulating Tregs. However, studies to-date have not demonstrated that low-dose IL-2 therapy can restore concomitant Treg function, and phase 2 studies in low dose IL-2 treated patients with autoimmune diseases have failed to demonstrate significant clinical benefit. We hypothesize that the defect in self-tolerance seen in autoimmunity is not due to an insufficient number of available Tregs, but rather, due to defects in second messengers downstream of the IL-2R that normally control Treg function and stability. Previous studies from our lab and others have demonstrated that GRAIL (a ubiquitin E3 ligase) is important in Treg function. GRAIL expression is markedly diminished in Tregs from patients with autoimmune diseases and allergic asthma and is also diminished in Tregs of mice that are considered autoimmune prone. In the relevant pathway in Tregs, GRAIL normally blocks cullin ring ligase activity, which inhibits IL-2R desensitization in Tregs and consequently promotes Treg function. As a result of this defect in GRAIL expression, the Tregs of patients with autoimmune diseases and allergic asthma degrade IL-2R-associated pJAK1 following activation with low dose IL-2, and thus cannot maintain pSTAT5 expression. pSTAT5 controls the transcription of genes required for Treg function. Additionally, the GRAIL-mediated defect may also allow the degradation of the mTOR inhibitor, DEP domain-containing mTOR interacting protein (Deptor). This can lead to IL-2R activation of mTOR and loss of Treg stability in autoimmune patients. Using a monoclonal antibody to the remnant di-glycine tag on ubiquitinated proteins after trypsin digestion, we identified a protein that was ubiquitinated by GRAIL that is important in Treg function, cullin5. Our data demonstrate that GRAIL acts a negative regulator of IL-2R desensitization by ubiquitinating a lysine on cullin5 that must be neddylated to allow cullin5 cullin ring ligase activity. We hypothesize that a neddylation inhibitor in combination with low dose IL-2 activation could be used to substitute for GRAIL and restore Treg function and stability in the Tregs of autoimmune and allergic asthma patients. However, the neddylation activating enzyme inhibitors (NAEi) are toxic when given systemically. By generating a protein drug conjugate (PDC) consisting of a NAEi bound, via cleavable linkers, to a fusion protein of murine IL-2 (to target the drug to Tregs), we were able to use 1000-fold less of the neddylation inhibitor drug than the amount required for therapeutically effective systemic delivery. The PDC was effective in blocking the onset or the progression of disease in several mouse models of autoimmunity (type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis) and a mouse model of allergic asthma in the absence of detectable toxicity. This PDC strategy represents targeted drug delivery at its best where the defect causing the disease was identified, a drug was designed and developed to correct the defect, and the drug was targeted and delivered only to cells that needed it, maximizing safety and efficacy.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Camundongos , Animais , Interleucina-2/metabolismo , Proteínas Culina/metabolismo , Receptores de Interleucina-2 , Doenças Autoimunes/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
J Infect Dis ; 226(9): 1667-1677, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970817

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS: We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS: We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS: We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Imunoglobulina G , Anticorpos Neutralizantes , Formação de Anticorpos , Anticorpos Antivirais , Proteínas do Envelope Viral
5.
Annu Rev Virol ; 9(1): 491-520, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704747

RESUMO

Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Imunidade Adaptativa , Animais , Citomegalovirus , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/uso terapêutico , Humanos , Imunidade Inata , Recém-Nascido , Desenvolvimento de Vacinas
6.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763348

RESUMO

Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Infecções por Herpesviridae , Anticorpos Antivirais , Formação de Anticorpos , Criança , Citomegalovirus , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/uso terapêutico , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Imunoglobulina G , Estudos Prospectivos
7.
Sci Transl Med ; 12(568)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148624

RESUMO

Human cytomegalovirus (CMV) is the most common infectious cause of infant brain damage and posttransplant complications worldwide. Despite the high global burden of disease, vaccine development to prevent infection remains hampered by challenges in generating protective immunity. The most efficacious CMV vaccine candidate tested to date is a soluble glycoprotein B (gB) subunit vaccine with MF59 adjuvant (gB/MF59), which achieved 50% protection in multiple historical phase 2 clinical trials. The vaccine-elicited immune responses that conferred this protection have remained unclear. We investigated the humoral immune correlates of protection from CMV acquisition in populations of CMV-seronegative adolescent and postpartum women who received the gB/MF59 vaccine. We found that gB/MF59 immunization elicited distinct CMV-specific immunoglobulin G (IgG)-binding profiles and IgG-mediated functional responses in adolescent and postpartum vaccinees, with heterologous CMV strain neutralization observed primarily in adolescent vaccinees. Using penalized multiple logistic regression analysis, we determined that protection against primary CMV infection in both cohorts was associated with serum IgG binding to gB present on a cell surface but not binding to the soluble vaccine antigen, suggesting that IgG binding to cell-associated gB is an immune correlate of vaccine efficacy. Supporting this, we identified gB-specific monoclonal antibodies that differentially recognized soluble or cell-associated gB, revealing that there are structural differences in cell-associated and soluble gB are relevant to the generation of protective immunity. Our results highlight the importance of the native, cell-associated gB conformation in future CMV vaccine design.


Assuntos
Vacinas contra Citomegalovirus , Adolescente , Anticorpos Antivirais , Feminino , Humanos , Polissorbatos , Esqualeno , Proteínas do Envelope Viral
8.
Virology ; 548: 182-191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838941

RESUMO

Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Citomegalovirus/genética , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Masculino , Proteínas do Envelope Viral/genética , Adulto Jovem
9.
J Infect Dis ; 221(Suppl 1): S60-S73, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134481

RESUMO

Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/transmissão , Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Transmissão Vertical de Doenças Infecciosas , Imunidade Adaptativa , Animais , Antígenos Virais/imunologia , Pesquisa Biomédica , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/imunologia , Modelos Animais de Doenças , Genoma Viral , Genômica/métodos , Cobaias , Humanos , Imunidade Inata , Imunização , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Especificidade da Espécie , Vacinação , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
10.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051265

RESUMO

A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. The MF59-adjuvanted glycoprotein B (gB) protein subunit vaccine (gB/MF59) is the most efficacious vaccine tested to date for this indication. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of the full-length gB protein with an MF59-like squalene-based adjuvant, the gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA encoding full-length gB. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. The AD-3-immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits. Though gB ectodomain subunit vaccination eliminated targeting of epitopes in AD-3, it did not improve vaccine-elicited neutralizing or nonneutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited an enhanced durability of vaccine-elicited antibody responses. Furthermore, the gB mRNA-LNP vaccine enhanced the breadth of IgG binding responses against discrete gB peptides. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the use of gB nucleoside-modified mRNA-LNP vaccines is a viable strategy for improving on the partial efficacy of gB/MF59 vaccination and should be further evaluated in preclinical models.IMPORTANCE Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects, resulting in permanent neurological disability for one newborn child every hour in the United States. After more than a half century of research and development, we remain without a clinically licensed vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease. In this study, we sought to improve upon the glycoprotein B protein vaccine (gB/MF59), the most efficacious HCMV vaccine evaluated in a clinical trial, via targeted modifications to either the protein structure or vaccine formulation. Utilization of a novel vaccine platform, nucleoside-modified mRNA formulated in lipid nanoparticles, increased the durability and breadth of vaccine-elicited antibody responses. We propose that an mRNA-based gB vaccine may ultimately prove more efficacious than the gB/MF59 vaccine and should be further evaluated for its ability to elicit antiviral immune factors that can prevent HCMV-associated disease.


Assuntos
Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Polissorbatos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Coelhos , Esqualeno/imunologia , Vacinação/métodos , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética
11.
Front Immunol ; 10: 2110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555298

RESUMO

Herpesvirus infections are a leading cause of neurodevelopmental delay in newborns and end-organ disease in immunocompromised patients. One leading strategy to reduce the disease burden of herpesvirus infections such as herpes simplex virus (HSV) and human cytomegalovirus (HCMV) is to prevent primary acquisition by vaccination, yet vaccine development remains hampered by limited understanding of immune correlates of protection against infection. Traditionally, vaccine development has aimed to increase antibody titers with neutralizing function, which involves the direct binding of antibodies to viral particles. However, recent research has explored the numerous other responses that can be mediated by engagement of the antibody constant region (Fc) with Fc receptors (FcR) present on immune cells or with complement molecules. These functions include antiviral responses such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Uniquely, herpesviruses encode FcR that can act as distractor receptors for host antiviral IgG, thus enabling viral evasion of host defenses. This review focuses on the relative roles of neutralizing and non-neutralizing functions antibodies that target herpesvirus antigens for HSV and HCMV, as well as the roles of Fc-FcR interactions for both host defenses and viral escape.


Assuntos
Anticorpos Antivirais/metabolismo , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Herpesviridae/imunologia , Receptores Fc/metabolismo , Simplexvirus/fisiologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Humanos , Imunidade
12.
J Infect Dis ; 220(5): 772-780, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31107951

RESUMO

BACKGROUND: Development of a cytomegalovirus (CMV) vaccine is a high priority. However, the ability of antibodies to protect against CMV infection is not well characterized. Studies of maternal antibodies in infants offer the potential to identify humoral correlates of protection against postnatal acquisition. METHODS: This hypothesis-generating study analyzed 29 Ugandan mother-infant pairs that were followed weekly for CMV acquisition. Seventeen mothers and no infants were infected with human immunodeficiency virus (HIV). We evaluated the association between CMV-specific immunoglobulin G (IgG) responses in mothers at the time of delivery and their infants' CMV status at 6 months of age. We also assessed levels of CMV-specific IgG in infants at 6 weeks of age. CMV-specific IgG responses in the mother-infant pairs were then analyzed on the basis of perinatal HIV exposure. RESULTS: We found similar levels of multiple CMV glycoprotein-specific IgG binding specificities and functions in mothers and infants, irrespective of perinatal HIV exposure or infant CMV status at 6 months of age. However, the glycoprotein B-specific IgG titer, measured by 2 distinct assays, was higher in infants without CMV infection and was moderately associated with delayed CMV acquisition. CONCLUSIONS: These data suggest that high levels of glycoprotein B-specific IgG may contribute to the partial protection against postnatal CMV infection afforded by maternal antibodies, and they support the continued inclusion of glycoprotein B antigens in CMV vaccine candidates.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Imunidade Humoral , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Infecções por HIV/complicações , Humanos , Imunoglobulina G/imunologia , Imunoglobulinas Intravenosas , Lactente , Mães , Uganda , Proteínas do Envelope Viral/imunologia
13.
Proc Natl Acad Sci U S A ; 115(24): 6267-6272, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29712861

RESUMO

Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, frequently causing hearing loss and brain damage in afflicted infants. A vaccine to prevent maternal acquisition of HCMV during pregnancy is necessary to reduce the incidence of infant disease. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine platform is the most successful HCMV vaccine tested to date, demonstrating ∼50% efficacy in preventing HCMV acquisition in multiple phase 2 trials. However, the mechanism of vaccine protection remains unknown. Plasma from 33 postpartum women gB/MF59 vaccinees at peak immunogenicity was tested for gB epitope specificity as well as neutralizing and nonneutralizing anti-HCMV effector functions and compared with an HCMV-seropositive cohort. gB/MF59 vaccination elicited IgG responses with gB-binding magnitude and avidity comparable to natural infection. Additionally, IgG subclass distribution was similar with predominant IgG1 and IgG3 responses induced by gB vaccination and HCMV infection. However, vaccine-elicited antibodies exhibited limited neutralization of the autologous virus, negligible neutralization of multiple heterologous strains, and limited binding responses against gB structural motifs targeted by neutralizing antibodies including AD-1, AD-2, and domain I. Vaccinees had high-magnitude IgG responses against AD-3 linear epitopes, demonstrating immunodominance against this nonneutralizing, cytosolic region. Finally, vaccine-elicited IgG robustly bound membrane-associated gB on the surface of transfected or HCMV-infected cells and mediated virion phagocytosis, although were poor mediators of NK cell activation. Altogether, these data suggest that nonneutralizing antibody functions, including virion phagocytosis, likely played a role in the observed 50% vaccine-mediated protection against HCMV acquisition.


Assuntos
Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Antivirais/imunologia , Células Cultivadas , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Polissorbatos , Esqualeno/imunologia , Adulto Jovem
14.
PLoS One ; 9(6): e100538, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945248

RESUMO

The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vacinas Antimaláricas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Galinhas , Feminino , Vetores Genéticos/metabolismo , Humanos , Imunização , Macaca mulatta/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
15.
Immunol Res ; 58(2-3): 358-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24781194

RESUMO

The main function of the immune system is to fight off potential infections, but also to maintain its activity below a level that would trigger self-reactivity. Regulatory T cells (Tregs) such as forkhead box P3(+) (FOXP3) Tregs and type 1 regulatory T cells (Tr1) play an essential role in this active process, using several distinct suppressive mechanisms. A wide range of pathologies have been associated with altered Treg cell function. This is best exemplified by the impact of mutations of genes essential for Treg function and the associated autoimmune syndromes. This review summarizes the main features of different subtypes of Tregs and focuses on the clinical implications of their altered function in human studies. More specifically, we discuss abnormalities affecting FOXP3(+) Tregs and Tr1 cells that will lead to autoimmune manifestations and/or allergic reactions, and the potential therapeutic use of Tregs.


Assuntos
Hipersensibilidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Humanos , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Hipersensibilidade/terapia , Imunomodulação/efeitos dos fármacos , Imunoterapia , Fenótipo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
16.
PLoS One ; 9(1): e86790, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497979

RESUMO

Signal transducer and activator of transcription (STAT) comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation. However, these roles remain unclear in humans. We applied chromatin immunoprecipitation followed by DNA sequencing using human CD4(+) T cells to detect candidate genes regulated by STAT5A and/or STAT5B, and quantitative-PCR in STAT5A or STAT5B knock-down (KD) human CD4(+) T cells to validate the findings. Our data show STAT5A and STAT5B play redundant roles in cell proliferation and apoptosis via SGK1 interaction. Interestingly, we found a novel, unique role for STAT5A in binding to genes involved in neural development and function (NDRG1, DNAJC6, and SSH2), while STAT5B appears to play a distinct role in T cell development and function via DOCK8, SNX9, FOXP3 and IL2RA binding. Our results also suggest that one or more co-activators for STAT5A and/or STAT5B may play important roles in establishing different binding abilities and gene regulation behaviors. The new identification of these genes regulated by STAT5A and/or STAT5B has major implications for understanding the pathophysiology of cancer progression, neural disorders, and immune abnormalities.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Fator de Transcrição STAT5/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Transporte Ativo do Núcleo Celular , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Sequência Consenso , Humanos , Multimerização Proteica , Ativação Transcricional , Transcriptoma
17.
Clin Immunol ; 148(2): 227-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23773921

RESUMO

STAT5A and STAT5B are highly homologous proteins whose distinctive roles in human immunity remain unclear. However, STAT5A sufficiency cannot compensate for STAT5B defects, and human STAT5B deficiency, a rare autosomal recessive primary immunodeficiency, is characterized by chronic lung disease, growth failure and autoimmunity associated with regulatory T cell (Treg) reduction. We therefore hypothesized that STAT5A and STAT5B play unique roles in CD4(+) T cells. Upon knocking down STAT5A or STAT5B in human primary T cells, we found differentially regulated expression of FOXP3 and IL-2R in STAT5B knockdown T cells and down-regulated Bcl-X only in STAT5A knockdown T cells. Functional ex vivo studies in homozygous STAT5B-deficient patients showed reduced FOXP3 expression with impaired regulatory function of STAT5B-null Treg cells, also of increased memory phenotype. These results indicate that STAT5B and STAT5A act partly as non-redundant transcription factors and that STAT5B is more critical for Treg maintenance and function in humans.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fator de Transcrição STAT5/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Adolescente , Adulto , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Células Cultivadas , Criança , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Fator de Transcrição STAT5/genética , Linfócitos T Reguladores/fisiologia , Proteínas Supressoras de Tumor/genética , Adulto Jovem , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...