Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Exp Eye Res ; 225: 109283, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273577

RESUMO

Sex steroids play a role in regulation of tear film function and may exert their action locally at the ocular surface. However, measurement of sex steroids in tears is difficult due to small-volume tear samples and very low concentrations of the hormones. This short communication highlights what has been achieved to date in the analysis of tear sex steroids using ultra-performance LC-MS (UPLC-MS) as previously published, and reports further and more recent investigations toward optimising mass spectrometry method sensitivity and accuracy. The published UPLC-MS method successfully measured progesterone, androsterone glucuronide and 5α-androstane-3α,17ß-diol in pooled basal tears of postmenopausal women, and fourteen sex steroid standards in methanol. Limitations included sub-optimal limits of detection (LOD) and lower limits of quantification (LLOQ) for some analytes (particularly oestrogens), exclusion of sample matrix effects and no use of internal standards. This update reports on further experiments carried out to improve sensitivity and accuracy. Sample matrix effects, internal standard spiking, and derivatisation with dansyl chloride and oximes were investigated. Dansylation significantly improved the LOD and LLOQ of oestrogens and their metabolites, by a factor of 10 for oestradiol and a factor of 5 for oestrone, but sensitivity of this updated method is not sufficient however for analysis of these oestrogens in human tears. Using gas chromatography-mass spectrometry (GC-MS) as an alternative technique to LC-MS, improved sensitivity for derivatised oestradiol is reported. This work demonstrates the need to develop higher sensitivity methods and points researchers towards specific MS ionisation techniques for future analysis of sex steroids in tears, in order to progress current understanding of the role of sex steroids in tear function and dry eye.


Assuntos
Hormônios Esteroides Gonadais , Espectrometria de Massas em Tandem , Humanos , Feminino , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem/métodos , Estrogênios , Estradiol
2.
Nutrients ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631226

RESUMO

Huntington's disease (HD) is a genetic, neurodegenerative illness that onsets in late adulthood as a series of progressive and terminal cognitive, motor, and psychiatric deficits. The disease is caused by a polyQ mutation in the Huntingtin gene (HTT), producing a polyglutamine expansion in the Huntingtin protein (HTT). HTT interacts with phospholipids in vitro; however, its interactions are changed when the protein is mutated in HD. Emerging evidence suggests that the susceptibility of brain regions to pathological stimuli is influenced by lipid composition. This study aimed to identify where and how phospholipids are changed in human HD brain tissue. Phospholipids were extracted using a modified MTBE method from the post-mortem brain of 13 advanced-stage HD patients and 13 age- and sex-matched controls. Targeted precursor ion scanning mass spectrometry was used to detect phospholipid species. In the white cortex of HD patients, there was a significantly lower abundance of phosphatidylcholine (PC) and phosphatidylserine (PS), but no difference in phosphatidylethanolamine (PE). In HD putamen, ester-linked 22:6 was lower in all phospholipid classes promoting a decrease in the relative abundance of ester polyunsaturated fatty acids in PE. No differences in phospholipid composition were identified in the caudate, grey cortex or cerebellum. Ether-linked PE fatty acids appear protected in the HD brain, as no changes were identified. The nature of phospholipid alterations in the HD brain is dependent on the lipid (subclass, species, and bond type) and the location.


Assuntos
Doença de Huntington , Adulto , Ésteres , Lobo Frontal/metabolismo , Humanos , Doença de Huntington/genética , Fosfolipídeos/metabolismo , Putamen/metabolismo , Putamen/patologia
3.
Brain Commun ; 4(1): fcab303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169703

RESUMO

Huntington's disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington's mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington's disease (control n = 13, Huntington's n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington's cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington's brain whilst the white and grey frontal cortex were spared. The caudate of Huntington's patients had a shifted sphingolipid profile, favouring long (C13-C21) over very-long-chain (C22-C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington's caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington's patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington's brain. However, there was evidence of possible post-translational modifications in the Huntington's patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington's disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.

4.
Sci Rep ; 10(1): 20314, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219259

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative illness caused by a mutation in the huntingtin gene (HTT) and subsequent protein (mhtt), to which the brain shows a region-specific vulnerability. Disturbances in neural cholesterol metabolism are established in HD human, murine and cell studies; however, cholesteryl esters (CE), which store and transport cholesterol in the brain, have not been investigated in human studies. This study aimed to identify region-specific alterations in the concentrations of CE in HD. The Victorian Brain Bank provided post-mortem tissue from 13 HD subjects and 13 age and sex-matched controls. Lipids were extracted from the caudate, putamen and cerebellum, and CE were quantified using targeted mass spectrometry. ACAT 1 protein expression was measured by western blot. CE concentrations were elevated in HD caudate and putamen compared to controls, with the elevation more pronounced in the caudate. No differences in the expression of ACAT1 were identified in the striatum. No remarkable differences in CE were detected in HD cerebellum. The striatal region-specific differences in CE profiles indicate functional subareas of lipid disturbance in HD. The increased CE concentration may have been induced as a compensatory mechanism to reduce cholesterol accumulation.


Assuntos
Núcleo Caudado/química , Ésteres do Colesterol/análise , Doença de Huntington/patologia , Putamen/química , Acetil-CoA C-Acetiltransferase/análise , Acetil-CoA C-Acetiltransferase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Núcleo Caudado/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Ésteres do Colesterol/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , Putamen/patologia
5.
Methods Mol Biol ; 1583: 221-239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28205178

RESUMO

Analysis of sterols by mass spectrometry is a fundamental technique allowing for both qualitative and quantitative characterization of sterol molecular lipid species. Lipids are isolated from matrix or matrices by homogenization and solvent extraction, and converted into species amenable for ionization either by derivatization or adduct formation. Chromatogaphy (either gas or liquid phase) can assist with the resolution of sterols. Tandem mass spectrometry allows the precise identification of sterol lipid species, while comparison to internal standards added during extraction enables accurate quantification.


Assuntos
Espectrometria de Massas/métodos , Esteróis/análise
6.
J Huntingtons Dis ; 5(3): 285-296, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567888

RESUMO

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disease with no effective treatment or cure. Environmental enrichment has been used to slow processes leading to ageing and neurodegenerative diseases including HD. Phenolic phytochemicals including anthocyanins have also been shown to improve brain function in ageing and neurodegenerative diseases. OBJECTIVE: This study examined the effects of anthocyanin dietary supplementation and environmental enrichment on behavioural phenotypes and brain cholesterol metabolic alterations in the R6/1 mouse model of HD. METHODS: R6/1 HD mice and their wild-type littermate controls were randomised into the different experimental conditions, involving either environmentally enriched versus standard housing conditions, or anthocyanin versus control diet. Motor dysfunction was assessed from 6 to 26 weeks using the RotaRod and the hind-paw clasping tests. Gas chromatography - tandem mass spectrometry was used to quantify a broad range of sterols in the striatum and cortex of R6/1 HD mice. RESULTS: Anthocyanin dietary supplementation delayed the onset of motor dysfunction in female HD mice. Environmental enrichment improved motor function and the hind paw clasping phenotype in male HD mice only. These mice also had lower levels of cholesterol oxidation products in the cortex compared to standard-housed mice. CONCLUSION: Both anthocyanin supplementation and environmental enrichment are able to improve the motor dysfunction phenotype of R6/1 mice, however the effectiveness of these interventions was different between the two sexes. The interventions examined did not alter brain cholesterol metabolic deficits that have been reported previously in this mouse model of HD.


Assuntos
Antocianinas/administração & dosagem , Dietoterapia/métodos , Meio Ambiente , Doença de Huntington/dietoterapia , Doença de Huntington/enfermagem , Análise de Variância , Animais , Antocianinas/uso terapêutico , Peso Corporal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos Transgênicos , Atividade Motora/fisiologia , Força Muscular/genética , Força Muscular/fisiologia , Distribuição Aleatória , Esteróis/metabolismo , Espectrometria de Massas em Tandem , Repetições de Trinucleotídeos/genética
7.
Neuropathol Appl Neurobiol ; 42(6): 535-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26373857

RESUMO

AIMS: Cholesterol plays an essential role in membrane structure and function, being especially important in the brain. Alteration of brain cholesterol synthesis and metabolism has been demonstrated in several Huntington's disease (HD) mouse and cell models; however, less is known about these alterations in human tissue. This study aimed to identify alterations to cholesterol synthetic and metabolic pathways in human HD brain tissue. METHODS: A broad range of cholesterol synthetic precursors, metabolites and oxidation products were measured by gas chromatography-tandem mass spectrometry in five regions of human post mortem HD brain and compared with age- and sex-matched control tissues. The level of enzymes that regulate cholesterol homeostasis, cholesterol 24-hydroxylase and delta(24)-sterol reductase were investigated by Western blotting and qPCR in putamen. RESULTS: The most significant changes were localized to the putamen, where a 60% decrease in 24(S)-hydroxycholesterol, 30% increase in cholesterol and 100-200% increase in synthetic precursors (lathosterol, zymosterol and desmosterol) was detected. The enzymes cholesterol 24-hydroxylase and delta(24)-sterol reductase were also significantly decreased in HD putamen as compared with control tissues. Free radical-generated cholesterol oxidation products 7-keto cholesterol and 7ß-hydroxycholesterol were also increased by 50-70% in HD putamen. CONCLUSION: Human HD brain has significantly decreased cholesterol metabolism and disrupted cholesterol homeostasis. Our data also indicate that lipid oxidative stress accompanies HD pathology.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Doença de Huntington/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Huntingtons Dis ; 4(4): 305-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26639223

RESUMO

BACKGROUND: Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. OBJECTIVE: This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. METHODS: GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. RESULTS: 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. CONCLUSION: Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic approaches.


Assuntos
Córtex Cerebral/metabolismo , Colesterol/metabolismo , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Esteróis/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Motores/fisiopatologia
9.
Neurobiol Aging ; 36(5): 1820-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25784209

RESUMO

Apolipoprotein D (apoD) is expressed in the brain and levels are increased in affected brain regions in Alzheimer's disease (AD). The role that apoD may play in regulating AD pathology has not been addressed. Here, we crossed both apoD-null mice and Thy-1 human apoD transgenic mice with APP-PS1 amyloidogenic AD mice. Loss of apoD resulted in a nearly 2-fold increase in hippocampal amyloid plaque load, as assessed by immunohistochemical staining. Conversely, transgenic expression of neuronal apoD reduced hippocampal plaque load by approximately 35%. This latter finding was associated with a 60% decrease in amyloid ß 1-40 peptide levels, and a 34% decrease in insoluble amyloid ß 1-42 peptide. Assessment of ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) levels and proteolytic products of amyloid precursor protein and neuregulin-1 point toward a possible association of altered BACE1 activity in association with altered apoD levels. In conclusion, the current studies provide clear evidence that apoD regulates amyloid plaque pathology in a mouse model of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteínas D/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Neuregulina-1/metabolismo , Proteólise
10.
J Parkinsons Dis ; 5(1): 175-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25613350

RESUMO

BACKGROUND: Oxidative stress contributes to Parkinson's disease (PD) etiology. Although previous studies have focused on sources of free radical formation in brain regions affected by PD, less is known regarding changes in lipid composition and the implications for susceptibility to peroxidation. OBJECTIVE: To assess fatty acid profiles from control and PD tissues that are susceptible to PD pathology but devoid of severe destruction. METHODS: We used gas chromatography methods to assess fatty acid profiles from control (n = 10) and PD (n = 9) postmortem tissues. We focused on the anterior cingulate cortex (ACC), a region that accumulates alpha-synuclein, but does not undergo severe destruction, and compared this to the occipital cortex, a region that is pathologically spared. RESULTS: Our data indicate a significant 33% increase in the proportion of polyunsaturated fatty acids (mol%) present in the PD ACC as compared to control ACC. Increases in highly unsaturated 22:5n-6 and 22:6n-3 fatty acids were particularly pronounced (109% and 73%, respectively). Calculation of a peroxidation index (accounting for total fatty acyl double bounds) indicated a 44% increase in susceptibility of the PD ACC to lipid peroxidation compared to control ACC. Such differences were not detected in the occipital cortex from the same donors. Assessment of F2-isprostane levels confirmed that PD tissue lipids were more oxidized than controls. CONCLUSIONS: The global composition of fatty acids in the PD ACC is altered in a way that increases susceptibility to peroxidation in a region-specific manner. This has important implications for PD, supporting the oxidative stress hypothesis of PD pathogenesis.


Assuntos
Ácidos Graxos/metabolismo , Giro do Cíngulo/metabolismo , Peroxidação de Lipídeos/fisiologia , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino
11.
J Alzheimers Dis ; 42(4): 1383-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024347

RESUMO

Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AßPPSwe/PS1ΔE9 (AßPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AßPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Canabidiol/farmacologia , Transtornos da Memória/prevenção & controle , Transtornos da Memória/fisiopatologia , Nootrópicos/farmacologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Comportamento Social
12.
J Alzheimers Dis ; 35(3): 475-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23455990

RESUMO

Previous studies indicate that apolipoprotein D (apoD) may have a lipid antioxidant function in the brain. We have shown that apoD can reduce free radical-generating lipid hydroperoxides to inert lipid hydroxides in a reaction that involves conversion of surface exposed apoD methione-93 (Met93) residue to Met93-sulfoxide (Met93-SO). One consequence of this reaction is the formation of a stable dimerized form of apoD. As cerebral lipid peroxidation is associated with Alzheimer's disease (AD), in the present study we aimed to assess the possible presence of apoD dimers in postmortem hippocampal and cerebellar tissues derived from a cohort of pathologically defined cases ranging from control to late stage AD. Both soluble and insoluble (requiring guanidine HCl extraction) fractions of tissue homogenates were analyzed for apoD and its dimerized form. We also assessed amyloid-ß levels by ELISA and levels of lipid peroxidation by lipid conjugated diene and F2-isoprostane analysis. Our studies reveal a significant association between soluble apoD levels and AD Braak stage whereas apoD dimer formation appears to increase predominantly in the advanced stages of disease. The formation of apoD dimers is closely correlated to lipid conjugated diene levels and occurs in the hippocampus but not in the cerebellum. These results are consistent with the hypothesis that apoD acts as a lipid antioxidant in the brain.


Assuntos
Doença de Alzheimer/patologia , Antioxidantes/metabolismo , Apolipoproteínas D/metabolismo , Dimerização , Hipocampo/patologia , Peroxidação de Lipídeos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Cerebelo/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo
13.
PLoS One ; 8(2): e55639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409013

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by broad clinical manifestations including cardiovascular and renal complications with periodic disease flares and significant morbidity and mortality. One of the main contributing factors to the pathology of SLE is the accumulation and impaired clearance of immune complexes of which the principle components are host auto-antigens and antibodies. The contribution of host lipids to the formation of these autoimmune complexes remains poorly defined. The aim of the present study was to identify and analyze candidate lipid autoantigens and their corresponding anti-lipid antibody responses in a well-defined SLE patient cohort using a combination of immunological and biophysical techniques. Disease monitoring in the SLE cohort was undertaken with serial British Isles Lupus Assessment Group (BILAG) scoring. Correlations between specific lipid/anti-lipid responses were investigated as disease activity developed from active flares to quiescent during a follow up period. We report a significant negative correlation between anti-lipid antibodies for 24S-hydroxycholesterol, cardiolipin and phosphatidylserine with SLE disease activity. Taken together, these data suggest that lipid autoantigens represent a new family of biomarkers that can be employed to monitor disease activity plus the efficacy of therapeutic intervention in SLE.


Assuntos
Autoanticorpos/imunologia , Lipídeos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Biomarcadores/metabolismo , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imunoglobulina G/sangue
14.
Lipids ; 48(3): 307-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23355308

RESUMO

We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.


Assuntos
Química Encefálica , Fracionamento Químico/métodos , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/isolamento & purificação , Éteres Metílicos/química , Idoso de 80 Anos ou mais , Cromatografia Gasosa-Espectrometria de Massas/economia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala/economia , Humanos , Lipídeos/análise , Masculino , Espectrometria de Massas por Ionização por Electrospray/economia , Espectrometria de Massas por Ionização por Electrospray/métodos , Fatores de Tempo
15.
PLoS One ; 6(2): e17299, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21387008

RESUMO

BACKGROUND: We present a lipidomics analysis of human Parkinson's disease tissues. We have focused on the primary visual cortex, a region that is devoid of pathological changes and Lewy bodies; and two additional regions, the amygdala and anterior cingulate cortex which contain Lewy bodies at different disease stages but do not have as severe degeneration as the substantia nigra. METHODOLOGY/PRINCIPAL FINDINGS: Using liquid chromatography mass spectrometry lipidomics techniques for an initial screen of 200 lipid species, significant changes in 79 sphingolipid, glycerophospholipid and cholesterol species were detected in the visual cortex of Parkinson's disease patients (n = 10) compared to controls (n = 10) as assessed by two-sided unpaired t-test (p-value <0.05). False discovery rate analysis confirmed that 73 of these 79 lipid species were significantly changed in the visual cortex (q-value <0.05). By contrast, changes in 17 and 12 lipid species were identified in the Parkinson's disease amygdala and anterior cingulate cortex, respectively, compared to controls; none of which remained significant after false discovery rate analysis. Using gas chromatography mass spectrometry techniques, 6 out of 7 oxysterols analysed from both non-enzymatic and enzymatic pathways were also selectively increased in the Parkinson's disease visual cortex. Many of these changes in visual cortex lipids were correlated with relevant changes in the expression of genes involved in lipid metabolism and an oxidative stress response as determined by quantitative polymerase chain reaction techniques. CONCLUSIONS/SIGNIFICANCE: The data indicate that changes in lipid metabolism occur in the Parkinson's disease visual cortex in the absence of obvious pathology. This suggests that normalization of lipid metabolism and/or oxidative stress status in the visual cortex may represent a novel route for treatment of non-motor symptoms, such as visual hallucinations, that are experienced by a majority of Parkinson's disease patients.


Assuntos
Transtornos do Metabolismo dos Lipídeos/complicações , Metabolismo dos Lipídeos/fisiologia , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Córtex Visual/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Transtornos do Metabolismo dos Lipídeos/patologia , Masculino , Redes e Vias Metabólicas/fisiologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/patologia , Transtornos da Visão/etiologia , Transtornos da Visão/metabolismo , Córtex Visual/química , Córtex Visual/patologia
16.
Age (Dordr) ; 33(3): 229-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20730501

RESUMO

Thymic involution and shrinkage of secondary lymphoid organs are leading causes of the deterioration of the T-cell compartment with age. Inflamm-aging, a sustained inflammatory status, has been associated with chronic diseases and shortened longevity. This is the first study to investigate the effect of treating aging hybrid mice with long-term, low-dose resveratrol (RSV) in drinking water by assessing multiple immunological markers and profiles in the immune system. We found that hybrid mice exhibited marked age-related changes in the CD3+CD4+, C3+CD8+, CD4+CD25+, CD4M and CD8M surface markers. RSV reversed surface phenotypes of old mice to that of young mice by maintaining the CD4+ and CD8+ population in splenocytes as well as reducing CD8+CD44+ (CD8M) cells in the aged. RSV also enhanced the CD4+CD25+ population in old mice. Interestingly, pro-inflammatory status in young mice was transiently elevated by RSV but it consequently mitigated the age-dependent increased pro-inflammatory cytokine profile while preserving the anti-inflammatory cytokine condition in the old mice. Age-dependent increase in 8OHdG, an oxidative DNA damage marker was ameliorated by RSV. Immunological-focused microarray gene expression analysis showed that only the CD72 gene was significantly downregulated in the 12-month RSV-treated mice compared to age-matched controls. Our study indicates that RSV even at low physiological relevant levels is able to affect the immune system without causing marked gene expression changes.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Citocinas/imunologia , Dano ao DNA/efeitos dos fármacos , Estilbenos/farmacologia , Subpopulações de Linfócitos T/imunologia , Envelhecimento/imunologia , Animais , Antígenos de Superfície/imunologia , Contagem de Células , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , Baço/imunologia
17.
J Cell Physiol ; 226(2): 494-510, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20683911

RESUMO

Inhibition of proteasome degradation pathway has been implicated in neuronal cell death leading to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. We and others demonstrated that treatment of cortical neurons with the proteasomal inhibitor lactacystin leads to apoptosis. We discovered by microarray analysis that lactacystin treatment modulates the expression of both potentially neuroprotective as well as pro-apoptotic genes in neurons. However, the significance of the genes which upon transcriptional modulation contributed to proteasomal inhibition-induced apoptosis, remained unidentified. By employing microarray analysis to decipher the time-dependent changes in transcription of these genes in cultured cortical neurons, we discovered different groups of genes were transcriptionally regulated in the early and late phase of lactacystin-induced cell death. In the early phase, several neuroprotective genes such as those encoding the proteasome subunits and ubiquitin-associated enzymes, as well as the heat-shock proteins (HSP) were up-regulated. However, the pro-apoptotic endoplasmic reticulum (ER) stress-associated genes were also up-regulated at the early phase of lactacystin-induced neuronal cell death. In the late phase, genes encoding antioxidants and calcium-binding proteins were up-regulated while those associated with cholesterol biosynthesis were down-regulated. The data suggest that ER stress may participate in mediating the apoptotic responses induced by proteasomal inhibition. The up-regulation of the neuroprotective antioxidant genes and calcium-binding protein genes and down-regulation of the cholesterol biosynthesis genes in the later phase are likely consequences of stimulation of the pro-apoptotic signaling pathways in the early phase of lactacystin treatment.


Assuntos
Acetilcisteína/análogos & derivados , Córtex Cerebral/citologia , Inibidores de Cisteína Proteinase/farmacologia , Retículo Endoplasmático/metabolismo , Neurônios , Inibidores de Proteassoma , Estresse Fisiológico/genética , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Análise em Microsséries , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Regulação para Cima
18.
Mol Neurobiol ; 41(2-3): 299-313, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20140539

RESUMO

Excitotoxicity due to excess stimulation of glutamate receptors in neurons is accompanied by increased Ca(2+) influx, stimulation of Ca(2+)-dependent enzymes, ATP depletion, increase in lipid peroxidation products, and loss of glutathione. These changes resemble neurochemical alterations in acute neuronal injury (stroke, spinal cord injury, and traumatic brain injury) and chronic neurodegenerative diseases such as Alzheimer's disease. Intracerebroventricular injection of the potent glutamate analog kainate in rats results in increased cholesterol concentration in the hippocampus at short to medium time intervals, i.e., 3 days-1 week post-injection, as detected by gas chromatography-mass spectrometry in the lesioned hippocampus. This is accompanied by an early increase in levels of cholesterol biosynthetic precursors and increases in both enzymatically derived oxysterols such as 24-hydroxycholesterol and cholesterol oxidation products (COPs) generated by reactive oxygen species, including cholesterol epoxides and 7-ketocholesterol. In contrast to COPs, no change in concentration of the neurosteroid pregnenolone was found after KA injury. Cholesterol and COPs significantly increase exocytosis in cultured PC12 cells and neurons, and both oxysterols and COPs are able to induce cytotoxic and apoptotic injuries in different cell types, including neurons. Together, the findings suggest that increased cholesterol and COPs after KA excitotoxicity could themselves lead to disturbed neuronal ion homeostasis, increased neurotransmitter release, and propagation of excitotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colesterol/metabolismo , Ácido Caínico/toxicidade , Receptores de Glutamato/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Colesterol/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Memória/fisiologia , Estrutura Molecular , Transdução de Sinais/fisiologia , Esfingolipídeos/química , Esfingolipídeos/metabolismo
19.
J Neurochem ; 112(1): 34-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19860851

RESUMO

The present study was carried out to elucidate changes in the gene expression and activity of cholesterol biosynthetic enzymes and transporters in the rat hippocampus after kainate excitotoxicity. Significantly increased cholesterol level was detected in the degenerating hippocampus, reaching double normal levels at 1 week after kainate injury. RT-PCR analyses of hippocampal homogenates showed significantly decreased mRNA expression of the transcription factor controlling cholesterol biosynthesis SREBP-2, and the rate-controlling enzyme HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase at all time points after kainate injection; and decreased lanosterol synthase and CYP51 at 1 and 2 weeks post-kainate injection respectively. GC-MS analyses showed a significant increase in cholesterol biosynthetic precursors lanosterol, desmosterol and 7-dehydrocholesterol at 1 day after kainate injection presumably reflecting biosysnthesis in injured neurons, and significant decreases in precursors at 1 and 2 weeks post-kainate injection, at time of gliosis in the degenerating hippocampus. Levels of cholesterol autooxidation including 7 ketocholesterol and cholesterol epoxides were elevated in the kainate lesioned hippocampus. Furthermore, loss of expression of the cholesterol transporter, ABCA1 was detected in neurons, but increased expression in astrocytes was detected after kainate lesions. The results suggest that increased cholesterol biosynthesis and loss of ABCA1 expression in injured neurons might result in increase in cholesterol in the degenerating hippocampus. The increased cholesterol might predispose to increased formation of cholesterol oxidation products which have been shown to be toxic to neurons.


Assuntos
Colesterol/biossíntese , Agonistas de Aminoácidos Excitatórios/toxicidade , Transdução de Sinais/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Colesterol/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ácido Caínico/toxicidade , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
20.
J Nutr ; 139(12): 2309-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19812218

RESUMO

Flavonoids are phytochemicals that are widespread in the human diet. Despite limitations in their bioavailability, experimental and epidemiological data suggest health benefits of flavonoid consumption. Valid biomarkers of flavonoid intake may be useful for estimating exposure in a range of settings. However, to date, few useful flavonoid biomarkers have been identified. In this study, we used a metabolite profiling approach to examine the aromatic and phenolic profile of plasma and urine of healthy men after oral consumption of 200 mg of the pure flavonoids, quercetin, (-)-epicatechin, and epigallocatechin gallate, which represent major flavonoid constituents in the diet. Following enzymatic hydrolysis, 71 aromatic compounds were quantified in plasma and urine at 2 and 5 h, respectively, after flavonoid ingestion. Plasma concentrations of different aromatic compounds ranged widely, from 0.01 to 10 micromol/L, with variation among volunteers. None of the aromatic compounds was significantly elevated in plasma 2 h after consumption of either flavonoid compared with water placebo. This indicates that flavonoid-derived aromatic compounds are not responsible for the acute physiological effects reported within 2 h in previous human intervention studies involving flavonoids or flavonoid-rich food consumption. These effects are more likely due to absorption of the intact flavonoid. Our urine analysis suggested that urinary 4-ethylphenol, benzoic acid, and 4-ethylbenzoic acid may be potential biomarkers of quercetin intake and 1,3,5-trimethoxybenzene, 4-O-methylgallic acid, 3-O-methylgallic acid, and gallic acid may be potential markers of epigallocatechin gallate intake. Potential biomarkers of (-)-epicatechin were not identified. These urinary biomarkers may provide an accurate indication of flavonoid exposure.


Assuntos
Biomarcadores/sangue , Flavonoides/farmacologia , Adulto , Biomarcadores/urina , Índice de Massa Corporal , Catequina/análogos & derivados , Catequina/sangue , Catequina/farmacologia , Catequina/urina , Flavonoides/sangue , Flavonoides/urina , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Nitratos/sangue , Nitratos/urina , Nitritos/sangue , Nitritos/urina , Fenóis/sangue , Fenóis/química , Quercetina/sangue , Quercetina/farmacologia , Quercetina/urina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...