Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 532: 118-127, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077825

RESUMO

HYPOTHESIS: Vapor adsorption experiments are widely used to assess pore size distributions, but the large hysteresis sometimes observed between sorption and desorption isotherms remains difficult to interpret. Such hysteresis is influenced pore network connectivity, which has previously been modeled by percolation on infinite lattices. Our hypothesis is that percolation occurs instead through finite networks of micropores connecting accessible macropores, always exposed to the outside environment. THEORY: We derive a general formula for sorption/desorption isotherms that introduces a simple measure of hierarchical pore connectivity - the fraction of always exposed pores. The model thus accounts for "small world" connections in finite-size percolation, while also incorporating other hysteresis mechanisms, in single-pore filling, liquid insertion into the solid matrix, and cavitation. FINDINGS: Our formula is able to fit and interpret both primary and scanning sorption/desorption isotherms for a variety of adsorbates (noble gases, water, and organics) and porous materials (cement pastes, dental enamels, porous glasses, carbon black and nanotubes), including cases with broad pore-size distributions and large hysteresis. It allows quantification of the prevalence of percolating macropores in the material, even though these pores are never filled during the sorption experiments. A distinct bump in sorption isotherms is explained as a lowering of the barrier to nucleation of the vapor phase with a universal temperature scaling.

2.
Nat Mater ; 6(4): 311-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17384634

RESUMO

Although Portland cement concrete is the world's most widely used manufactured material, basic questions persist regarding its internal structure and water content, and their effect on concrete behaviour. Here, for the first time without recourse to drying methods, we measure the composition and solid density of the principal binding reaction product of cement hydration, calcium-silicate-hydrate (C-S-H) gel, one of the most complex of all gels. We also quantify a nanoscale calcium hydroxide phase that coexists with C-S-H gel. By combining small-angle neutron and X-ray scattering data, and by exploiting the hydrogen/deuterium neutron isotope effect both in water and methanol, we determine the mean formula and mass density of the nanoscale C-S-H gel particles in hydrating cement. We show that the formula, (CaO)1.7(SiO2)(H2O)1.80, and density, 2.604 Mg m(-3), differ from previous values for C-S-H gel, associated with specific drying conditions. Whereas previous studies have classified water within C-S-H gel by how tightly it is bound, in this study we classify water by its location-with implications for defining the chemically active (C-S-H) surface area within cement, and for predicting concrete properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...