Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 76: 105655, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225214

RESUMO

Resistant starch type 2 (RS) was isolated from lotus stem using enzymatic digestion method. The isolated RS was subjected to ultrasonication (US) at different sonication power (100-400 W). The US treated and untreated RS samples were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), light microscopy and Fourier transform infrared spectroscopy (FT-IR). DLS revealed that particle size of RS decreased from 12.80 µm to 413.19 nm and zeta potential increased from -12.34 mV to -26.09 mV with the increase in sonication power. SEM revealed smaller, disintegrated and irregular shaped RS particles after ultrasonication. FT-IR showed the decreased the band intensity at 995 cm-1 and 1047 cm-1 signifying that US treatment decreased the crystallinity of RS and increased its amorphous character. The bile acid binding, anti-oxidant and pancreatic lipase inhibition activity of samples also increased significantly (p < 0.05) with the increase in sonication power. Increase in US power however increased the values of hydrolysis from 23.11 ± 1.09 to 36.06 ± 0.13% and gylcemic index from 52.39 ± 0.38 to 59.50 ± 0.11. Overall, the non-thermal process of ultrasonic treatment can be used to change the structural, morphological and nutraceutical profile of lotus stem resistant starch which can have great food and pharamaceutical applications.


Assuntos
Lotus/química , Caules de Planta/química , Amido Resistente/análise , Ondas Ultrassônicas , Absorção Fisico-Química , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...