Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(7): 2466-2478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38373128

RESUMO

Cardiac digital twins (CDTs) have the potential to offer individualized evaluation of cardiac function in a non-invasive manner, making them a promising approach for personalized diagnosis and treatment planning of myocardial infarction (MI). The inference of accurate myocardial tissue properties is crucial in creating a reliable CDT of MI. In this work, we investigate the feasibility of inferring myocardial tissue properties from the electrocardiogram (ECG) within a CDT platform. The platform integrates multi-modal data, such as cardiac MRI and ECG, to enhance the accuracy and reliability of the inferred tissue properties. We perform a sensitivity analysis based on computer simulations, systematically exploring the effects of infarct location, size, degree of transmurality, and electrical activity alteration on the simulated QRS complex of ECG, to establish the limits of the approach. We subsequently present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS. The proposed model achieves mean Dice scores of 0.457 ±0.317 and 0.302 ±0.273 for the inference of left ventricle scars and border zone, respectively. The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features. The in silico experimental results show that the model can effectively capture the relationship for the inverse inference, with promising potential for clinical application in the future. The code is available at https://github.com/lileitech/MI_inverse_inference.


Assuntos
Eletrocardiografia , Imageamento por Ressonância Magnética , Infarto do Miocárdio , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Humanos , Eletrocardiografia/métodos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Coração/diagnóstico por imagem , Aprendizado Profundo , Algoritmos
2.
Proc Math Phys Eng Sci ; 471(2184): 20150641, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26807042

RESUMO

Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...