Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 96: 104000, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252730

RESUMO

Toxicity resulting from off-target effects, beyond acetylcholine esterase inhibition, for the commonly used organophosphate (OP) insecticides chlorpyrifos (CPS) and malathion (MA) was investigated using Saccharomyces cerevisiae and Caenorhabditis elegans model systems. Mitochondrial damage and dysfunction were observed in yeast following exposure to CPS and MA, suggesting this organelle is a major target. In the C. elegans model, the mitochondrial unfolded protein response pathway showed the most robust induction from CPS and MA treatment among stress responses examined. GABAergic neurodegeneration was observed with CPS and MA exposure. Impaired movement observed in C. elegans exposed to CPS and MA may be the result of motor neuron damage. Our analysis suggests that stress from CPS and MA results in mitochondrial dysfunction, with GABAergic neurons sensitized to these effects. These findings may aid in the understanding of toxicity from CPS and MA from high concentration exposure leading to insecticide poisoning.


Assuntos
Clorpirifos , Inseticidas , Animais , Clorpirifos/toxicidade , Malation/toxicidade , Caenorhabditis elegans , Neurônios GABAérgicos/metabolismo , Inseticidas/metabolismo , Mitocôndrias
2.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668176

RESUMO

Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.


Assuntos
Bacopa/química , Enzimas Reparadoras do DNA/metabolismo , Endonucleases/metabolismo , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triterpenos/farmacologia , Vacúolos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Glicosídeos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/química , Vacúolos/metabolismo
3.
Cell Biosci ; 10: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944219

RESUMO

BACKGROUND: Shwachman-Diamond syndrome (SDS) is a congenital disease that affects the bone marrow, skeletal system, and pancreas. The majority of patients with SDS have mutations in the SBDS gene, involved in ribosome biogenesis as well as other processes. A Saccharomyces cerevisiae model of SDS, lacking Sdo1p the yeast orthologue of SBDS, was utilized to better understand the molecular pathogenesis in the development of this disease. RESULTS: Deletion of SDO1 resulted in a three-fold over-accumulation of intracellular iron. Phenotypes associated with impaired iron-sulfur (ISC) assembly, up-regulation of the high affinity iron uptake pathway, and reduced activities of ISC containing enzymes aconitase and succinate dehydrogenase, were observed in sdo1∆ yeast. In cells lacking Sdo1p, elevated levels of reactive oxygen species (ROS) and protein oxidation were reduced with iron chelation, using a cell impermeable iron chelator. In addition, the low activity of manganese superoxide dismutase (Sod2p) seen in sdo1∆ cells was improved with iron chelation, consistent with the presence of reactive iron from the ISC assembly pathway. In yeast lacking Sdo1p, the mitochondrial voltage-dependent anion channel (VDAC) Por1p is over-expressed and its deletion limits iron accumulation and increases activity of aconitase and succinate dehydrogenase. CONCLUSIONS: We propose that oxidative stress from POR1 over-expression, resulting in impaired activity of ISC containing proteins and disruptions in iron homeostasis, may play a role in disease pathogenesis in SDS patients.

4.
J Cell Biochem ; 120(8): 13867-13880, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938873

RESUMO

Mutations in the human SBDS gene is the most common cause of Shwachman-Diamond syndrome (SDS). The SBDS protein participates in ribosome biogenesis; however, effects beyond reduced translation efficiency are thought to be involved in SDS progression. Impaired mitochondrial function has been reported for cells lacking either SBDS or Sdo1p, the Saccharomyces cerevisiae SBDS ortholog. To better understand how the loss of SBDS/Sdo1p leads to mitochondria damage, we utilized the S. cerevisiae model of SDS. Yeast deleted for SDO1 show increased oxidative damage to mitochondrial proteins and a marked decrease in protein levels and activity of mitochondrial superoxide dismutase 2 (Sod2p), a key enzyme involved in defense against oxidants. Immature forms of Sod2p are observed in sdo1∆ cells suggesting a defect in proteolysis of the presequence. Yeast deleted for CYM1, encoding a presequence protease, display a similar reduction in Sod2p activity as sdo1∆ cells, as well as elevated oxidative damage, to mitochondrial proteins. Sod2p protein levels and activity are largely restored in a por1∆ sdo1∆ strain, lacking the major mitochondrial voltage-dependent anion channel. Together these results indicate that mitochondrial insufficiency in sdo1∆ cells may be linked to the accumulation of immature presequence containing proteins and this effect is a consequence, at least in part, from loss of counter-regulation of Por1p by Sdo1p.


Assuntos
Mitocôndrias/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Síndrome de Shwachman-Diamond/enzimologia , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas
5.
J Genet Genomics ; 42(12): 671-84, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26743985

RESUMO

Shwachman-Diamond syndrome (SDS) is a multi-system disorder characterized by bone marrow failure, pancreatic insufficiency, skeletal abnormalities, and increased risk of leukemic transformation. Most patients with SDS contain mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS), encoding a highly conserved protein that has been implicated in ribosome biogenesis. Emerging evidence also suggests a distinct role of SBDS beyond protein translation. Using the yeast model of SDS, we examined the underlying mechanisms that cause cells lacking Sdo1p, the yeast SBDS ortholog, to exhibit reduced tolerance to various stress conditions. Our analysis indicates that the environmental stress response (ESR), heat shock response (HSR), and endoplasmic reticulum unfolded protein response (UPR) of sdo1Δ cells are functional and that defects in these pathways do not produce the phenotypes observed in sdo1Δ yeast. Depletion of mitochondrial DNA (mtDNA) was observed in sdo1Δ cells, and this is a probable cause of the mitochondrial insufficiency in SDS. Prior disruption of POR1, encoding the mitochondrial voltage dependent anion channel (VDAC), abrogated the effects of SDO1 deletion and substantially restored resistance to environmental stressors and protected against damage to mtDNA. Conversely, wild-type cells over-expressing POR1 exhibited growth impairment and increased stress sensitivity similar to that seen in sdo1Δ cells. Overall, our results suggest that specific VDAC inhibitors may have therapeutic benefits for SDS patients.


Assuntos
Doenças da Medula Óssea/metabolismo , Insuficiência Pancreática Exócrina/metabolismo , Deleção de Genes , Lipomatose/metabolismo , Mitocôndrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Doenças da Medula Óssea/genética , Estresse do Retículo Endoplasmático , Insuficiência Pancreática Exócrina/genética , Temperatura Alta , Humanos , Lipomatose/genética , Mitocôndrias/metabolismo , Porinas/genética , Porinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome de Shwachman-Diamond , Estresse Fisiológico
6.
FEBS Lett ; 588(21): 4018-25, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25263705

RESUMO

Lysine deacetylases (KDACs) inhibitors may have therapeutic value in anti-malarial combination therapies with artemisinin. To evaluate connections between KDACs and artemisinin, Saccharomyces cerevisiae deletion mutants in KDAC genes were assayed. Deletion of RPD3, but not other KDAC genes, resulted in strong sensitivity to artemisinin, which was also observed in sit4Δ mutants with impaired endoplasmic reticulum (ER) to Golgi protein trafficking. Decreased accumulation of the transporters Pdr5p, Fur4p, and Tat2p was observed in rpd3Δ and sit4Δ cells. The unfolded protein response is induced in rpd3Δ cells consistent with retention of proteins in the ER. Disruption of protein trafficking appears to sensitize cells to artemisinin and targeting these pathways may be useful as part of artemisinin based anti-malarial therapy.


Assuntos
Artemisininas/farmacologia , Deleção de Genes , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...