Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010335

RESUMO

The computation of the nuclear quantum dynamics of molecules is challenging, requiring both accuracy and efficiency to be applicable to systems of interest. Recently, theories have been developed for employing time-dependent basis functions (denoted modals) with vibrational coupled cluster theory (TDMVCC). The TDMVCC method was introduced along with a pilot implementation, which illustrated good accuracy in benchmark computations. In this paper, we report an efficient implementation of TDMVCC, covering the case where the wave function and Hamiltonian contain up to two-mode couplings. After a careful regrouping of terms, the wave function can be propagated with a cubic computational scaling with respect to the number of degrees of freedom. We discuss the use of a restricted set of active one-mode basis functions for each mode, as well as two interesting limits: (i) the use of a full active basis where the variational modal determination amounts essentially to the variational determination of a time-dependent reference state for the cluster expansion; and (ii) the use of a single function as an active basis for some degrees of freedom. The latter case defines a hybrid TDMVCC/TDH (time-dependent Hartree) approach that can obtain even lower computational scaling. The resulting computational scaling for hybrid and full TDMVCC[2] is illustrated for polyaromatic hydrocarbons with up to 264 modes. Finally, computations on the internal vibrational redistribution of benzoic acid (39 modes) are used to show the faster convergence of TDMVCC/TDH hybrid computations towards TDMVCC compared to simple neglect of some degrees of freedom.

2.
Nat Comput Sci ; 3(6): 495-503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38177415

RESUMO

The formation of strongly bound atmospheric molecular clusters is the first step towards forming new aerosol particles. Recent advances in the application of machine learning models open an enormous opportunity for complementing expensive quantum chemical calculations with efficient machine learning predictions. In this Perspective, we present how data-driven approaches can be applied to accelerate cluster configurational sampling, thereby greatly increasing the number of chemically relevant systems that can be covered.

3.
J Chem Phys ; 157(23): 234104, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550053

RESUMO

We derive general bivariational equations of motion (EOMs) for time-dependent wave functions with biorthogonal time-dependent basis sets. The time-dependent basis functions are linearly parameterized and their fully variational time evolution is ensured by solving a set of so-called constraint equations, which we derive for arbitrary wave function expansions. The formalism allows division of the basis set into an active basis and a secondary basis, ensuring a flexible and compact wave function. We show how the EOMs specialize to a few common wave function forms, including coupled cluster and linearly expanded wave functions. It is demonstrated, for the first time, that the propagation of such wave functions is not unconditionally stable when a secondary basis is employed. The main signature of the instability is a strong increase in non-orthogonality, which eventually causes the calculation to fail; specifically, the biorthogonal active bra and ket bases tend toward spanning different spaces. Although formally allowed, this causes severe numerical issues. We identify the source of this problem by reparametrizing the time-dependent basis set through polar decomposition. Subsequent analysis allows us to remove the instability by setting appropriate matrix elements to zero. Although this solution is not fully variational, we find essentially no deviation in terms of autocorrelation functions relative to the variational formulation. We expect that the results presented here will be useful for the formal analysis of bivariational time-dependent wave functions for electronic and nuclear dynamics in general and for the practical implementation of time-dependent CC wave functions in particular.

4.
J Chem Theory Comput ; 18(12): 7373-7383, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36417753

RESUMO

Quantum chemical studies of the formation and growth of atmospheric molecular clusters are important for understanding aerosol particle formation. However, the search for the lowest free-energy cluster configuration is extremely time consuming. This makes high-level benchmark data sets extremely valuable in the quest for the global minimum as it allows the identification of cost-efficient computational methodologies, as well as the development of high-level machine learning (ML) models. Herein, we present a highly versatile quantum chemical data set comprising a total of 11 749 (acid)1-2(base)1-2 cluster configurations, containing up to 44 atoms. Utilizing the LUMI supercomputer, we calculated highly accurate PNO-CCSD(F12*)(T)/cc-pVDZ-F12 binding energies of the full set of cluster configurations leading to an unprecedented data set both in regard to sheer size and with respect to the level of theory. We employ the constructed benchmark set to assess the performance of various semiempirical and density functional theory methods. In particular, we find that the r2-SCAN-3c method shows excellent performance across the data set related to both accuracy and CPU time, making it a promising method to employ during cluster configurational sampling. Furthermore, applying the data sets, we construct ML models based on Δ-learning and provide recommendations for future application of ML in cluster configurational sampling.


Assuntos
Benchmarking , Teoria Quântica , Termodinâmica , Dimerização
5.
J Chem Phys ; 153(23): 234109, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353317

RESUMO

The first general excitation level implementation of the time-dependent vibrational coupled cluster (TDVCC) method introduced in a recent publication [J. Chem. Phys. 151, 154116 (2019)] is presented. The general framework developed for time-independent vibrational coupled cluster (VCC) calculations has been extended to the time-dependent context. This results in an efficient implementation of TDVCC with general coupling levels in the cluster operator and Hamiltonian. Thus, the convergence of the TDVCC[k] hierarchy toward the complete-space limit can be studied for any sum-of-product Hamiltonian. Furthermore, a scheme for including selected higher-order excitations for a subset of modes is introduced and studied numerically. Three different definitions of the TDVCC autocorrelation function (ACF) are introduced and analyzed in both theory and numerical experiments. Example calculations are presented for an array of systems including imidazole, formyl fluoride, formaldehyde, and a reduced-dimensionality bithiophene model. The results show that the TDVCC[k] hierarchy converges systematically toward the full-TDVCC limit and that the implementation allows accurate quantum-dynamics simulations of large systems to be performed. Specifically, the intramolecular vibrational-energy redistribution of the 21-dimensional imidazole molecule is studied in terms of the decay of the ACF. Furthermore, the importance of product separability in the definition of the ACF is highlighted when studying non-interacting subsystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...