Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 211(1): 15-25, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16988865

RESUMO

In artificial phospholipid bilayers, dual measurements of laurdan steady-state anisotropy and emission spectra can be used to identify the presence of liquid ordered phases. Human erythrocytes were used as a model to test whether similar measurements could be applied to biological samples. Specifically, laurdan anisotropy and emission spectra were obtained from native erythrocytes before and after treatment with calcium ionophore and from the microvesicles (known to be enriched in liquid ordered domains) shed from the cells during calcium entry. Spectral and anisotropy data were consistent with an increased order and reduced fluidity of erythrocyte membrane lipids upon ionophore treatment. Microvesicle membranes appeared more ordered than native erythrocytes and similar to ionophore-treated cells based on laurdan emission. In contrast, the anisotropy value was lower in microvesicles compared to ionophore-treated cells, suggesting greater probe mobility. Parallel measurements of diphenylhexatriene anisotropy corroborated the laurdan data. These results were consistent with the liquid ordered property of microvesicle membranes based on comparisons to behavior in artificial membranes. Two-photon microscopy was used to examine the distribution of laurdan fluorescence along the surface of erythrocyte membranes before and after ionophore treatment. A dual spatial analysis of laurdan anisotropy, as revealed by the distribution of laurdan emission spectra, and intensity excited by polarized light suggested that the plasma membranes of ionophore-treated erythrocytes may also exhibit elevated numbers of liquid ordered domains.


Assuntos
2-Naftilamina/análogos & derivados , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Corantes Fluorescentes , Lauratos , Coloração e Rotulagem , Difenilexatrieno , Polarização de Fluorescência , Humanos , Microdomínios da Membrana/metabolismo
2.
Biophys J ; 88(4): 2692-705, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15681653

RESUMO

Although cell membranes normally resist the hydrolytic action of secretory phospholipase A(2) (sPLA(2)), they become susceptible during apoptosis or after cellular trauma. Experimentally, susceptibility to the enzyme can be induced by loading cells with calcium. In human erythrocytes, the ability of the calcium ionophore to cause susceptibility depends on temperature, occurring best above approximately 35 degrees C. Considerable evidence from experiments with artificial bilayers suggests that hydrolysis of membrane lipids requires two steps. First, the enzyme adsorbs to the membrane surface, and second, a phospholipid diffuses from the membrane into the active site of the adsorbed enzyme. Analysis of kinetic experiments suggested that this mechanism can explain the action of sPLA(2) on erythrocyte membranes and that temperature and calcium loading promote the second step. This conclusion was further supported by binding experiments and assessment of membrane lipid packing. The adsorption of fluorescent-labeled sPLA(2) was insensitive to either temperature or ionophore treatment. In contrast, the fluorescence of merocyanine 540, a probe sensitive to lipid packing, was affected by both. Lipid packing decreased modestly as temperature was raised from 20 to 60 degrees C. Calcium loading enhanced packing at temperatures in the low end of this range, but greatly reduced packing at higher temperatures. This result was corroborated by measurements of the rate of extraction of a fluorescent phosphatidylcholine analog from erythrocyte membranes. Furthermore, drugs known to inhibit susceptibility in erythrocytes also prevented the increase in phospholipid extraction rate. These results argue that the two-step model applies to biological as well as artificial membranes and that a limiting step in the hydrolysis of erythrocyte membranes is the ability of phospholipids to migrate into the active site of adsorbed enzyme.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Fosfolipases A/metabolismo , Adsorção , Agkistrodon , Animais , Apoptose , Bário/química , Sítios de Ligação , Fenômenos Biofísicos , Biofísica , Cálcio/química , Cálcio/metabolismo , Membrana Celular/metabolismo , Venenos de Crotalídeos/metabolismo , Difusão , Relação Dose-Resposta a Droga , Fosfolipases A2 do Grupo II , Humanos , Hidrólise , Ionomicina/farmacologia , Ionóforos/farmacologia , Cinética , Bicamadas Lipídicas/química , Lipídeos/química , Lipídeos de Membrana/química , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Químicos , Fosfatidilcolinas/química , Fosfolipases A2 , Fosfolipídeos/química , Ligação Proteica , Pirimidinonas/farmacologia , Temperatura
3.
J Biol Chem ; 280(3): 2045-54, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15489236

RESUMO

Steroidogenic acute regulatory (StAR) protein facilitates import of cholesterol into adrenal and gonadal mitochondria where cholesterol is converted to pregnenolone, initiating steroidogenesis. StAR acts exclusively on the outer mitochondrial membrane (OMM) by unknown mechanisms. To identify StAR domains involved in membrane association, we reacted N-62 StAR with small unilamellar vesicles (SUVs) composed of lipids resembling the OMM. Solvent-exposed domains were digested with trypsin, Asp-N, or pepsin at different pH levels, and StAR peptides protected from proteolysis were identified by mass spectrometry. At pH 4 SUVs completely protected residues 259-282; at pH 6.5 this region was partially digested into 254-272, 254-273, and 254-274. Computer-graphic modeling of N-62 StAR indicated these peptides correspond to the C-terminal alpha4 helix and that residues Leu(275), Thr(263), and Arg(272) in alpha4 form stabilizing interactions with Gln(128), Asp(150), and Asp(106) in adjacent loops. CD spectroscopy of a 37-mer model of alpha4 (residues 247-287) indicated a random coil in aqueous buffer, but in 40% methanol the peptide was alpha-helical and achieved maximal alpha-helicity at pH 5.0 in the presence of SUVs. Reacting the 37-mer with diethyl pyrocarbamate incorporated into SUVs increased the number of modified residues. Thus the C-terminal alpha4 helix is critically involved in the membrane association of StAR with OMM lipids. The membrane association and the alpha-helical structure of the C terminus in the presence of OMM lipids are also pH-dependent. These results further support StAR undergoing a pH-dependent change in its conformation when interacting with the acidic phospholipid head groups of a membrane.


Assuntos
Concentração de Íons de Hidrogênio , Membranas Artificiais , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Hidrólise , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Fosfoproteínas/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...